CSE332: Data Abstractions

Lecture 28: Course Wrap-up

Tyler Robison
Summer 2010

Merging

S0, we've spent the quarter exploring many different
data structures; time to merge back together:

o/'\b

I

\‘

Some unexplored nodes

» Alternative data structures for balanced trees, priority
queues

» Disjoint-set data structure (union-find)
» AVL deletion

» Max-flow / min-cut graph algorithms

» Huffman coding (compression)

What we’ve covered

» Really just a beginning

Many other priority queues: skew heap, leftist heap,
binomial queue, ...

Many other dictionaries: red/black tree, splay tree, ...
Many variations on hash tables
Many variations on B-Trees

Many other sorts, graph algorithms, etc.
Just scratched the surface of concurrency
Run-time/recurrence-relation analysis go much deeper

What we’ve covered

» But we’ve covered the foundation

Many priority queues, but binary heaps are among the
most common

Many dictionary data structures; among which balanced
trees and hash tables are most important

Graph theory is an enormous area, but the basics will get
you a long ways

Parallelism/concurrency issues covered are all that’s
needed for many situations

And now

» You should now be equipped to

Learn new data structures & ADTSs

‘Once you learn one programming language, others come much
easier’

Understand/analyze run-times
Understand uses & trade-offs
In general make more informed use of them in programming

» Have had experience writing/debugging/testing data
structures & parallel/concurrent software

» More experience with proofs
Maybe not up to proving P!=NP, but still

» Know a bunch of tools, and know how to pick the
right tool for the job

6

Applications

» Hash tables: Everywhere
Seriously, everywhere
If you’re interviewing for a programming job/internship,
hash table questions are likely candidates

» Data Bases: B-Trees under the hood

» Graphs show up in CS again and again

Just very useful for modeling stuft:
Computer networks
Power grids
Road systems
Social networks
Knowledge/concept maps

Applications

» Parallelism & Concurrency

Increasingly important
Many more cores is likely the future of computing hardware
Programming for many cores is going to be important

Speed, and thus parallelism, hugely important in many areas
Games (Xbox 360: 3 cores)
Servers
Scientific/mathematical simulations
Many others; anything concerned with speed

Concurrency problems pop up even in some simple Java
applications

Ex: Handling GUI events
» Big Oh analysis: ubiquitous in CS

» Now some specific examples in Al; trees & graphs

Trees & Traversals

*Problem space as tree
\Want to find optimal

=Y

solution :
*BFS & iterative deepening ;
search both work well

Better technique called A* % 2 z % g Z
search:

N

I

N

@®

*Instead of ‘closest’ or

e}
[]
M
[}
n
B
e}
N
[
[o)
S
w

[=p]

w
(=2}

o]
A~

‘furthest’, choose lowest

—

N

—

N

=]

[o2]

-.‘l

~

COSt:g()'l'h() g[1[3] [1[3[4] [1] [2] [1]2]3
«g() is cost so far 7lols] [7]s[5| (7]els] (7] s

h() Is expected
distance to goal

9

Decision Trees

Basis for simple decision-making agents
*Algorithms to create optimal decision tree:
*Take set of labeled data (‘Sunny,Normal Humidity,Strong Wind:
Yes’)
*Uses ‘information gain’ to decide what attribute to ask about next
*Of course, real decision trees likely to be much larger
*EX: Face detection features

r——y Shall | play tennis today?
/‘\
Sunny Overcast Rain
High Normal Strong Weak
/ N / h

10 No Yes No Yes

Neural Networks

*Usually DAG of ‘neurons’
*Edges represent how
Information propagates from
Input nodes (observations) to
output nodes (decision)
*Uses include OCR:
*Conceptually have each
pixel as a binary input
Each output represents a
character: ‘Is this image a

9’

11

Input #1 —

Input #2 —

Input #3 —=

[nput
Layer

Hidden Layer

Output
Layer

O(Q
el
SIS

) || W
N X

O
1IN

O (%
oMo

Thanks!

» Extra office hours

12

