
CSE332: Data Abstractions

Lecture 28: Course Wrap-up

Tyler Robison

Summer 2010

1

Merging

2

So, we’ve spent the quarter exploring many different

data structures; time to merge back together:

Some unexplored nodes

3

 Alternative data structures for balanced trees, priority

queues

 Disjoint-set data structure (union-find)

 AVL deletion

 Max-flow / min-cut graph algorithms

 Huffman coding (compression)

What we’ve covered

4

 Really just a beginning

 Many other priority queues: skew heap, leftist heap,

binomial queue, …

 Many other dictionaries: red/black tree, splay tree, …

 Many variations on hash tables

 Many variations on B-Trees

 Many other sorts, graph algorithms, etc.

 Just scratched the surface of concurrency

 Run-time/recurrence-relation analysis go much deeper

What we’ve covered

5

 But we’ve covered the foundation

 Many priority queues, but binary heaps are among the

most common

 Many dictionary data structures; among which balanced

trees and hash tables are most important

 Graph theory is an enormous area, but the basics will get

you a long ways

 Parallelism/concurrency issues covered are all that’s

needed for many situations

And now

6

 You should now be equipped to
 Learn new data structures & ADTs

 ‘Once you learn one programming language, others come much
easier’

 Understand/analyze run-times

 Understand uses & trade-offs

 In general make more informed use of them in programming

 Have had experience writing/debugging/testing data
structures & parallel/concurrent software

 More experience with proofs
 Maybe not up to proving P!=NP, but still

 Know a bunch of tools, and know how to pick the
right tool for the job

Applications

7

 Hash tables: Everywhere

 Seriously, everywhere

 If you’re interviewing for a programming job/internship,

hash table questions are likely candidates

 Data Bases: B-Trees under the hood

 Graphs show up in CS again and again

 Just very useful for modeling stuff:

 Computer networks

 Power grids

 Road systems

 Social networks

 Knowledge/concept maps

Applications

8

 Parallelism & Concurrency
 Increasingly important

 Many more cores is likely the future of computing hardware

 Programming for many cores is going to be important

 Speed, and thus parallelism, hugely important in many areas
 Games (Xbox 360: 3 cores)

 Servers

 Scientific/mathematical simulations

 Many others; anything concerned with speed

 Concurrency problems pop up even in some simple Java
applications
 Ex: Handling GUI events

 Big Oh analysis: ubiquitous in CS

 Now some specific examples in AI; trees & graphs

Trees & Traversals

9

•Problem space as tree

•Want to find optimal

solution

•BFS & iterative deepening

search both work well

•Better technique called A*

search:

•Instead of ‘closest’ or

‘furthest’, choose lowest

cost=g()+h()

•g() is cost so far

•h() is expected

distance to goal

Decision Trees

10

•Basis for simple decision-making agents

•Algorithms to create optimal decision tree:

•Take set of labeled data (‘Sunny,Normal Humidity,Strong Wind:

Yes’)

•Uses ‘information gain’ to decide what attribute to ask about next

•Of course, real decision trees likely to be much larger

•Ex: Face detection features

Neural Networks

11

•Usually DAG of ‘neurons’

•Edges represent how

information propagates from

input nodes (observations) to

output nodes (decision)

•Uses include OCR:

•Conceptually have each

pixel as a binary input

•Each output represents a

character: ‘Is this image a

9?’

Thanks!

12

 Extra office hours

