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Easily one of the most important questions 

in Computer Science:
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Does P=NP?

 Of course, we need to go into what these terms mean

 P and NP are classes of problems

 P: Class of problems that can be solved in polynomial time

 NP: Class of problems where an answer can be verified in 

polynomial time

 We‟ll get into what that means

 The question is, are these sets equivalent?

 A question that computer scientists & mathematicians have 

been grappling with for a long time

 Most believe that P!=NP, but no one‟s proven it

 One such proof recently in the news (P!=NP; probably not valid)



Wow, that’s fantastic… who cares?
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 P=NP would mean that many „difficult‟ problems that 
could previously only be solved in exponential time could 
now be solved in polynomial time

 Some algorithms (such as cryptography) are based around the 
„difficulty‟ of brute-forcing it, but the ease of which an answer 
can be verified

 You can break many online encryptions now… with enough 
computing power

 Say, an enormous # of computers

 Or one computer running for several centuries

 And you don‟t break the scheme itself; you break it for a single 
session

 If P=NP, much of existing cryptography would (in theory) be 
insecure



Why, cont.
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 Proving equivalence (or non equivalence) of two 

problem classes interesting mathematically

 Proving (or disproving) P = NP is among the most 

vexing and important open questions in computer 

science and probably mathematics

 A $1M prize, the Turing Award, and eternal fame await

 Sort of the “Fermat‟s Last Theorem” of the CS world 

(except, this is unsolved)



Topic doesn’t really belong in CSE332
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 This lecture mentions some highlights of NP, the P vs. 
NP question, and NP-completeness

 It should not be part of CSE332:
 We don‟t spend enough time to do it justice

 To really cover it, a much larger block of time is needed, 
and after relevant theory background

 It‟s not on the final

 But you are all (?) “in transition”
 Due to recent shifting around of CS curriculum

 Encourage you to take Algorithms or Theory to learn more
 Remember the Dijsktra‟s quote : “computer science is no more 

about computers than astronomy is about telescopes” – they 
are quite relevant here

 Anyway, next academic year, this lecture drops out of 
CSE332

 And, it‟s an interesting (& important) problem



P
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 P: The class of problems that can be solved by 
algorithms running in polynomial time; O(nk) for some 
constant k
 Note: For purposes of this discussion, consider logn, nlogn, etc. 

as roughly the same as polynomial: nlogn < n2, so it‟s „about 
that fast‟
 Contrast with exponential time: very, very slow

 Every problem we have studied is in P
 Examples: Sorting, minimum spanning tree, …

 Yet many problems don‟t have efficient algorithms!

 While we may have been quite concerned with getting sorting 
down from O(n2) to O(nlogn), in the grand scheme of things, 
both are pretty good
 Really, polynomial time is sufficiently „quick‟
 Yes, even something insane like O(n24601)

 Exponential time is not; very quickly becomes infeasible to solve 
(precisely, anyway)



NP
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 NP: The class of problems for which polynomial time 

algorithms exist to check that an answer is correct

 Given this potential answer, can you verify that it‟s correct in 

polynomial time?

 To solve from scratch, we only know algorithms that can do it 

in exponential time

 If P=NP, then that would mean we‟d have polynomial time 

algorithms for solving NP problems

 Ex: We saw Dijkstra‟s algorithm for finding shortest path in 

polynomial time

 For an unweighted graph, finding the longest path (that doesn‟t 

repeat vertices) is in NP

 There is a bit more to it than that; need to modify the problem slightly



More NP
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 We know P  NP
 That is, if we already know how to solve a problem in 

polynomial time, we can verify a solution for it in polynomial 
time too

 NP stands for “non-deterministic polynomial time” for 
technical reasons

 Many details being left out, but this is the gist

 There are many important problems for which:
 We know they are in NP (we can verify solutions in polynomial 

time)

 We do not know if they are in P (but we highly doubt it)

 The best algorithms we have to solve them are exponential
 O(kn) for some constant k



NP Example One: Satisfiability
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 Input: a logic formula of size m containing n variables

 Various logical ands, ors, nots, implications, etc.

 Can assign true or false to each variable, evaluate 
according to rules, etc.

 Output: An assignment of Boolean values to the 
variables in the formula such that the formula is true

 That is, find an assignment for x1, x2, … xn such that the 
equation is true; if such an assignment exists

 A good problem to solve, in that you can use logic to 
represent many other problems

 An older branch of AI looked into encoding an agent‟s 
knowledge this way, then reasoning about the world by 
evaluating expressions



NP Example One: Satisfiability
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 We can solve it via „brute-force‟: 
 Try every possible variable assignment

 {x1=true,x2=true,…xn=true}, {x1=false…}…

 How many possibilities do we need to try?
 n variables, 2 possible values for each, so 2n possible 

assignments

 Not so bad for n=5… looking less bright for n=1,000

 So exponential time to solve by checking all 
possibilities

 We can verify it quickly though
 If I give you an assignment {x1=false, x2=….}, you can do it 

in polynomial time: just evaluate the expression

 If P=NP, a O(mknk) algorithm to solve this exists



NP Example One: Satisfiability
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 Quite a few NP problems are like this in that they:

 Are relatively simple to explain

 Can be solved easily but slowly by brute-force: simply 

try all possibilities



NP Example Two: Subset sum
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Input: An array of n numbers and a target-sum sum

Output: A subset of the numbers that add up to sum if one 
exists

O(2n) algorithm: Try every subset of array

O(nk) algorithm: Unknown, probably does not exist

Verifying a solution: Given a subset that allegedly adds up to 
sum, add them up in O(n)

14 17 5 2 3 2 6 7 6 17 31?



NP Example Three: 

Vertex Cover (modified)
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Input: A graph (V,E) and a number m

Output: A subset S of V such that for every edge (u,v) in E, at 
least one of u or v is in S and |S|=m (if such an S exists)

That is, every vertex in the graph is „covered‟ by being in S, or 
being adjacent to something in S, and the size of S is m

O(2m) algorithm: Try every subset of vertices of size m

O(mk) algorithm: Unknown, probably does not exist

Verifying a solution: See if S has size m and covers edges



NP Example Four: Traveling Salesman
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Input: A complete directed graph (V,E) and a number m.

Say, a graph of cities with edges as travel times

Output: A path that visits each vertex exactly once and has 
total cost < m if one exists

O(2|V|) algorithm: Try every valid path including all vertices; 
pick one of cost m

O(|V|k) algorithm: Unknown, probably does not exist

Verifying a solution: Traverse the graph in that order, keep 
track of the cost as you go; at the end, compare against 
m



More?
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 Thousands of different problems that:

 Have real applications

 Nobody has polynomial algorithms for

 Widely believed: None of these problems have 

polynomial algorithms

 That is, P!=NP

 For optimal solutions, but some can be approximated

more efficiently



NP-Completeness
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What we have been able to prove is that many problems in 
NP are actually NP-complete (one sec for why that‟s 
important)

To be NP-complete, needs to have 2 properties:

1. Be in NP (that is, a solution to it can be verified in 
polynomial time)

2. Be NP-hard: On an intuitive level, being NP-hard 
means that it is at least as hard as any other problem in 
NP

 What it boils down to: If we have a polynomial time solution to 
an NP-hard problem, we can alter it to solve any problem in 
NP in polynomial time

All four of our examples are NP-complete



P=NP ?
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 If we gave an algorithm that solved an NP-complete 

problem in polynomial time, we could then use it to 

solve all NP problems in polynomial time

 Because of our definition of NP-complete

 To show P=NP, you just need to find a polynomial 

time solution to a single NP-complete problem

 Or, to show P!=NP, you need to show that no polynomial 

time algorithm exists for a particular NP problem



Hard problems
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There are problems in each of these categories:

 We know how to solve efficiently

 We do not know how to solve efficiently: 
 For example, NP-complete problems

 We know we cannot solve efficiently (exponential time): 
see a Theory course

 We know we cannot solve at all: see CSE311/CSE322
 The Halting Problem

A key art in computer science: 

When handed a problem, figure out which category it is in!


