CSE332: Data Abstractions
Lecture 27: A Few Words on NP

Tyler Robison
Summer 2010

Easily one of the most important questions
in Computer Science:

Does P=NP?

» Of course, we need to go into what these terms mean

» P and NP are classes of problems
P: Class of problems that can be solved in polynomial time

NP: Class of problems where an answer can be verified in
polynomial time

We'll get into what that means
» The question is, are these sets equivalent?

A question that computer scientists & mathematicians have
been grappling with for a long time

Most believe that PI=NP, but no one’s proven it
One such proof recently in the news (P!=NP; probably not valid)

Wow, that’s fantastic... who cares?

» P=NP would mean that many ‘difficult’ problems that
could previously only be solved in exponential time could
now be solved in polynomial time

Some algorithms (such as cryptography) are based around the

'difficulty’ of brute-forcing it, but the ease of which an answer
can be verified

You can break many online encryptions now... with enough
computing power

Say, an enormous # of computers

Or one computer running for several centuries

And you don'’t break the scheme itself; you break it for a single
session

If P=NP, much of existing cryptography would (in theory) be
Insecure

Why, cont.

» Proving equivalence (or non equivalence) of two
oroblem classes interesting mathematically

» Proving (or disproving) P = NP Is among the most
vexing and important open questions in computer
science and probably mathematics

A $1M prize, the Turing Award, and eternal fame await

Sort of the “Fermat’s Last Theorem” of the CS world
(except, this is unsolved)

Topic doesn’t really belong in CS]

» This lecture mentions some highlights of NP,
NP guestion, and NP-completeness

» It should not be part of CSE332:
We don’t spend enough time to do it justice

332
the P vs.

To really cover it, a much larger block of time is needed,

and after relevant theory background
It's not on the final
» But you are all (?) “in transition”
Due to recent shifting around of CS curriculum

Encourage you to take Algorithms or Theory to learn more

Remember the Dijsktra’s quote : “computer science

IS N0 more

about computers than astronomy is about telescopes” — they

are quite relevant here

Anyway, next academic year, this lecture drops out of

CSE332
» And, it's an interesting (& important) problem

5

P

» P: The class of problems that can be solved by
algorithms running in polynomial time; O(nk) for some
constant k

Note: For purposes of this discussion, consider logn, nlogn, etc.

as roughly the same as polynomial: nlogn < n?, so it’s ‘about
that fast’

Contrast with exponential time: very, very slow
Every problem we have studied is in P

Examples: Sorting, minimum spanning tree, ...
Yet many problems don’t have efficient algorithms!

While we may have been quite concerned with getting sorting
down from O(n?) to O(nlogn), in the grand scheme of things,
both are pretty good
Really, polynomial time is sufficiently ‘quick’
Yes, even something insane like O(n%4601)

Exponential time is not; very quickly becomes infeasible to solve
(precisely, anyway)

NP

» NP: The class of problems for which polynomial time
algorithms exist to check that an answer is correct
Given this potential answer, can you verify that it's correct in
polynomial time?
To solve from scratch, we only know algorithms that can do it
In exponential time

If P=NP, then that would mean we’d have polynomial time
algorithms for solving NP problems
Ex: We saw Dijkstra’s algorithm for finding shortest path in
polynomial time
For an unweighted graph, finding the longest path (that doesn’t
repeat vertices) is in NP
There is a bit more to it than that; need to modify the problem slightly

More NP

» We know P < NP

That is, if we already know how to solve a problem in
polynomial time, we can verify a solution for it in polynomial
time too

» NP stands for “non-deterministic polynomial time” for
technical reasons

» Many detalls being left out, but this is the gist

» There are many important problems for which:
We know they are in NP (we can verify solutions in polynomial
time)
We do not know if they are in P (but we highly doubt it)

The best algorithms we have to solve them are exponential
O(k") for some constant k

NP Example One: Satisfiability

(—lfﬂl\filig\/iiil)/\(ilf]\/—'ﬁf??.\/i&l) f\(ile \/—11:4\/—'2?5)

» Input: a logic formula of size m containing n variables

Various logical ands, ors, nots, implications, etc.
Can assign true or false to each variable, evaluate
according to rules, etc.
» Output: An assignment of Boolean values to the
variables in the formula such that the formula is true
That is, find an assignment for x1, x2, ... xn such that the
equation is true; if such an assignment exists
» A good problem to solve, in that you can use logic to
represent many other problems

An older branch of Al looked into encoding an agent’s
knowledge this way, then reasoning about the world by

evaluating expressions

NP Example One: Satisfiability
(—lilfl\fi?g\/il:il)/\(ilil\/—liﬂg\/i&l)A(:EQV—lI4V—|ZU5)

» We can solve it via ‘brute-force’:
Try every possible variable assignment
{x1=true,x2=true,...xn=true}, {x1=false...}...
How many possibilities do we need to try?

n variables, 2 possible values for each, so 2" possible
assignments

Not so bad for n=5... looking less bright for n=1,000
» So exponential time to solve by checking all
possibilities
» We can verify it quickly though

If | give you an assignment {x1=false, x2=....}, you can do it
In polynomial time: just evaluate the expression

» If P=NP, a O(mknk) algorithm to solve this exists
10

NP Example One: Satisfiability

(_lil?l\/il?g\/ﬂtiil)/\(iﬁl\/_lfl?g\/ilq)/\(RTQV—I£C4\/—|$5)

» Quite a few NP problems are like this in that they:
Are relatively simple to explain

Can be solved easily but slowly by brute-force: simply
try all possibilities

11

NP Example Two: Subset sum

14 S 6 6| 17 317?

Input: An array of n numbers and a target-sum sum

Output: A subset of the numbers that add up to sum if one
exists

O(2") algorithm: Try every subset of array
O(nk) algorithm: Unknown, probably does not exist

Verifying a solution: Given a subset that allegedly adds up to
sum, add them up in O(n)

12

NP Example Three:
Vertex Cover (modified

Input: A graph (V,E) and a number m

Output: A subset S of V such that for every edge (u,v) in E, at
least one of u or vis in S and |S|=m (if such an S exists)

That is, every vertex in the graph is ‘covered’ by being in S, or
being adjacent to something in S, and the size of Sis m

O(2™) algorithm: Try every subset of vertices of size m
O(mk) algorithm: Unknown, probably does not exist

Verifying a solution: See if S has size m and covers edges

13

NP Example Four: Traveling Salesman

Input: A complete directed graph (V,E) and a number m.
Say, a graph of cities with edges as travel times

Output: A path that visits each vertex exactly once and has
total cost < m if one exists

O(2M) algorithm: Try every valid path including all vertices;
pick one of cost m

O(|V[¥) algorithm: Unknown, probably does not exist

Verifying a solution: Traverse the graph in that order, keep
track of the cost as you go; at the end, compare against
m

14

More?

» Thousands of different problems that:
Have real applications
Nobody has polynomial algorithms for

» Widely believed: None of these problems have
polynomial algorithms

That is, PI=NP

For optimal solutions, but some can be approximated
more efficiently

15

NP-Completeness

What we have been able to prove is that many problems in
NP are actually NP-complete (one sec for why that’s
Important)

To be NP-complete, needs to have 2 properties:
1. BeIn NP (that is, a solution to it can be verified in
polynomial time)

2. Be NP-hard: On an intuitive level, being NP-hard
means that it is at least as hard as any other problem in
NP

What it boils down to: If we have a polynomial time solution to
an NP-hard problem, we can alter it to solve any problem in
NP in polynomial time

All four of our examples are NP-complete

16

P=NP ?

» If we gave an algorithm that solved an NP-complete
problem in polynomial time, we could then use it to
solve all NP problems in polynomial time

Because of our definition of NP-complete

» To show P=NP, you just need to find a polynomial

time solution to a single NP-complete problem

Or, to show P!=NP, you need to show that no polynomial
time algorithm exists for a particular NP problem

17

Hard problems

There are problems in each of these categories:
» We know how to solve efficiently

» We do not know how to solve efficiently:
For example, NP-complete problems

» We know we cannot solve efficiently (exponential time):
see a Theory course

» We know we cannot solve at all: see CSE311/CSE322
The Halting Problem

A key art in computer science:
When handed a problem, figure out which category it is in!

18

