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Easily one of the most important questions 

in Computer Science:
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Does P=NP?

 Of course, we need to go into what these terms mean

 P and NP are classes of problems

 P: Class of problems that can be solved in polynomial time

 NP: Class of problems where an answer can be verified in 

polynomial time

 We‟ll get into what that means

 The question is, are these sets equivalent?

 A question that computer scientists & mathematicians have 

been grappling with for a long time

 Most believe that P!=NP, but no one‟s proven it

 One such proof recently in the news (P!=NP; probably not valid)



Wow, that’s fantastic… who cares?
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 P=NP would mean that many „difficult‟ problems that 
could previously only be solved in exponential time could 
now be solved in polynomial time

 Some algorithms (such as cryptography) are based around the 
„difficulty‟ of brute-forcing it, but the ease of which an answer 
can be verified

 You can break many online encryptions now… with enough 
computing power

 Say, an enormous # of computers

 Or one computer running for several centuries

 And you don‟t break the scheme itself; you break it for a single 
session

 If P=NP, much of existing cryptography would (in theory) be 
insecure



Why, cont.
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 Proving equivalence (or non equivalence) of two 

problem classes interesting mathematically

 Proving (or disproving) P = NP is among the most 

vexing and important open questions in computer 

science and probably mathematics

 A $1M prize, the Turing Award, and eternal fame await

 Sort of the “Fermat‟s Last Theorem” of the CS world 

(except, this is unsolved)



Topic doesn’t really belong in CSE332
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 This lecture mentions some highlights of NP, the P vs. 
NP question, and NP-completeness

 It should not be part of CSE332:
 We don‟t spend enough time to do it justice

 To really cover it, a much larger block of time is needed, 
and after relevant theory background

 It‟s not on the final

 But you are all (?) “in transition”
 Due to recent shifting around of CS curriculum

 Encourage you to take Algorithms or Theory to learn more
 Remember the Dijsktra‟s quote : “computer science is no more 

about computers than astronomy is about telescopes” – they 
are quite relevant here

 Anyway, next academic year, this lecture drops out of 
CSE332

 And, it‟s an interesting (& important) problem



P

6

 P: The class of problems that can be solved by 
algorithms running in polynomial time; O(nk) for some 
constant k
 Note: For purposes of this discussion, consider logn, nlogn, etc. 

as roughly the same as polynomial: nlogn < n2, so it‟s „about 
that fast‟
 Contrast with exponential time: very, very slow

 Every problem we have studied is in P
 Examples: Sorting, minimum spanning tree, …

 Yet many problems don‟t have efficient algorithms!

 While we may have been quite concerned with getting sorting 
down from O(n2) to O(nlogn), in the grand scheme of things, 
both are pretty good
 Really, polynomial time is sufficiently „quick‟
 Yes, even something insane like O(n24601)

 Exponential time is not; very quickly becomes infeasible to solve 
(precisely, anyway)



NP
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 NP: The class of problems for which polynomial time 

algorithms exist to check that an answer is correct

 Given this potential answer, can you verify that it‟s correct in 

polynomial time?

 To solve from scratch, we only know algorithms that can do it 

in exponential time

 If P=NP, then that would mean we‟d have polynomial time 

algorithms for solving NP problems

 Ex: We saw Dijkstra‟s algorithm for finding shortest path in 

polynomial time

 For an unweighted graph, finding the longest path (that doesn‟t 

repeat vertices) is in NP

 There is a bit more to it than that; need to modify the problem slightly



More NP
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 We know P  NP
 That is, if we already know how to solve a problem in 

polynomial time, we can verify a solution for it in polynomial 
time too

 NP stands for “non-deterministic polynomial time” for 
technical reasons

 Many details being left out, but this is the gist

 There are many important problems for which:
 We know they are in NP (we can verify solutions in polynomial 

time)

 We do not know if they are in P (but we highly doubt it)

 The best algorithms we have to solve them are exponential
 O(kn) for some constant k



NP Example One: Satisfiability
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 Input: a logic formula of size m containing n variables

 Various logical ands, ors, nots, implications, etc.

 Can assign true or false to each variable, evaluate 
according to rules, etc.

 Output: An assignment of Boolean values to the 
variables in the formula such that the formula is true

 That is, find an assignment for x1, x2, … xn such that the 
equation is true; if such an assignment exists

 A good problem to solve, in that you can use logic to 
represent many other problems

 An older branch of AI looked into encoding an agent‟s 
knowledge this way, then reasoning about the world by 
evaluating expressions



NP Example One: Satisfiability
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 We can solve it via „brute-force‟: 
 Try every possible variable assignment

 {x1=true,x2=true,…xn=true}, {x1=false…}…

 How many possibilities do we need to try?
 n variables, 2 possible values for each, so 2n possible 

assignments

 Not so bad for n=5… looking less bright for n=1,000

 So exponential time to solve by checking all 
possibilities

 We can verify it quickly though
 If I give you an assignment {x1=false, x2=….}, you can do it 

in polynomial time: just evaluate the expression

 If P=NP, a O(mknk) algorithm to solve this exists



NP Example One: Satisfiability
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 Quite a few NP problems are like this in that they:

 Are relatively simple to explain

 Can be solved easily but slowly by brute-force: simply 

try all possibilities



NP Example Two: Subset sum
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Input: An array of n numbers and a target-sum sum

Output: A subset of the numbers that add up to sum if one 
exists

O(2n) algorithm: Try every subset of array

O(nk) algorithm: Unknown, probably does not exist

Verifying a solution: Given a subset that allegedly adds up to 
sum, add them up in O(n)

14 17 5 2 3 2 6 7 6 17 31?



NP Example Three: 

Vertex Cover (modified)

13

Input: A graph (V,E) and a number m

Output: A subset S of V such that for every edge (u,v) in E, at 
least one of u or v is in S and |S|=m (if such an S exists)

That is, every vertex in the graph is „covered‟ by being in S, or 
being adjacent to something in S, and the size of S is m

O(2m) algorithm: Try every subset of vertices of size m

O(mk) algorithm: Unknown, probably does not exist

Verifying a solution: See if S has size m and covers edges



NP Example Four: Traveling Salesman
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Input: A complete directed graph (V,E) and a number m.

Say, a graph of cities with edges as travel times

Output: A path that visits each vertex exactly once and has 
total cost < m if one exists

O(2|V|) algorithm: Try every valid path including all vertices; 
pick one of cost m

O(|V|k) algorithm: Unknown, probably does not exist

Verifying a solution: Traverse the graph in that order, keep 
track of the cost as you go; at the end, compare against 
m



More?
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 Thousands of different problems that:

 Have real applications

 Nobody has polynomial algorithms for

 Widely believed: None of these problems have 

polynomial algorithms

 That is, P!=NP

 For optimal solutions, but some can be approximated

more efficiently



NP-Completeness
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What we have been able to prove is that many problems in 
NP are actually NP-complete (one sec for why that‟s 
important)

To be NP-complete, needs to have 2 properties:

1. Be in NP (that is, a solution to it can be verified in 
polynomial time)

2. Be NP-hard: On an intuitive level, being NP-hard 
means that it is at least as hard as any other problem in 
NP

 What it boils down to: If we have a polynomial time solution to 
an NP-hard problem, we can alter it to solve any problem in 
NP in polynomial time

All four of our examples are NP-complete



P=NP ?
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 If we gave an algorithm that solved an NP-complete 

problem in polynomial time, we could then use it to 

solve all NP problems in polynomial time

 Because of our definition of NP-complete

 To show P=NP, you just need to find a polynomial 

time solution to a single NP-complete problem

 Or, to show P!=NP, you need to show that no polynomial 

time algorithm exists for a particular NP problem



Hard problems
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There are problems in each of these categories:

 We know how to solve efficiently

 We do not know how to solve efficiently: 
 For example, NP-complete problems

 We know we cannot solve efficiently (exponential time): 
see a Theory course

 We know we cannot solve at all: see CSE311/CSE322
 The Halting Problem

A key art in computer science: 

When handed a problem, figure out which category it is in!


