CSE332: Data Abstractions

Lecture 25: Deadlocks and Additional
Concurrency Issues

Tyler Robison
Summer 2010

Where we are

» We've covered basic concurrency, then some odds
and ends:

Readers/writer locks
Condition variables

» There are a couple more common issues we need to
hit:
Deadlocks: Very common and very bad
Additional problems that pop up due to concurrency

A New Concurrency Issue: Deadlocks
So far our bank account operations have been limited to one
account
Now consider a transfer method between accounts
As always, we’d like to synchronize access (one lock per account
for a fine-grained locking scheme)

BankAccount {

void withdraw(int amt) {..}
void deposit(int amt) {..}
void transferTo (int amt,BankAccount a) {
.withdraw (amt) ;
a.deposit (amt) ;
}
}

Notice during call to a.deposit, thread holds 2 locks; first it's own
then the destination account’s (both due to synchronized)

The Deadlock

For simplicity, suppose x and y are static fields holding accounts

What happens if symmetric transfers occur simultaneously between
accounts x & y?

Thread 1: x. transferTo(1,y) Thread2:y.transferTo(1l,x)

acquire lock for x
do withdraw from y

acquire lock for y
do withdraw from x

Time

block on lock for x

block on lock for y
v

Deadlock: Each thread is waiting for the other’s lock

Ex: The Dining Philosophers
» 5 philosophers go out to dinner together at an Italian
restaurant

» Sit at a round table; one fork per setting

» When the spaghetti comes, each philosopher proceeds
to grab their right fork, then their left fork, then eats

» ‘Locking’ for each fork results in a deadlock

Deadlock, in general

A deadlock occurs when there are threads T1, ..., Tn
such that:

» Fori=1,..,n-1, Ti is waiting for a resource held by
T(i+1)

» Tn Is waiting for a resource held by T1

In other words, there is a cycle of waiting
Can formalize as a graph of dependencies with cycles

Deadlock avoidance in programming amounts to
techniques to ensure a cycle can never arise

6

Back to our example

Options for deadlock-proof transfer:

1.

Make a s_maller critical section: transferTo not
synchronized

Exposes intermediate state after withdraw before deposit

May work out okay here, but would break other functionality

If we were to get the total $ in all accounts at this point, it would be
wrong

Coarsen lock granularity: one lock for all accounts allowing
transfers between them

Works, but sacrifices concurrent deposits/withdrawals

Give every bank-account a unique number and always
acquire locks in the same order...

Entire program should obey this order to avoid cycles
Code acquiring only one lock is fine though

Ordering locks

BankAccount {

int acctNumber; // must be unique
void transferTo(int amt, BankAccount a) {
(this.acctNumber < a.acctNumber)

() |
(a) {
.withdraw (amt) ;
a.deposit(amt) ;

H)

(a) {
() A
.withdraw (amt) ;
a.deposit(amt) ;

)

Another example

From the Java standard library

StringBuffer ({
int count;
char[] wvalue;

append (StringBuffer sb) {
int len = sb.length()
if (.count + len > this.value.length)
.expand(...) ;
sb.getChars (0,len,this.value, this.count) ;
}
getChars (int x, int, vy,
char[] a, int z) {
“copy .value[x..y] into a starting at z”

}

Two problems

Problem #1: Deadlock potential if two threads try to
append In opposite directions, just like in the bank-
account first example

Problem #2: The lock for sb is not held between calls to
sb.length and sb.getChars

So sb could get longer

Would cause append to throw an
ArrayBoundsException

Not easy to fix both problems without extra copying:
Do not want unique ids on every StringBuffer
Do not want one lock for all StringBuffer objects

10

Perspective

» Code like account-transfer and string-buffer append are
difficult to deal with for reasons of deadlock

» Easier case: different types of objects
Can document a fixed order among types

Example: “"When moving an item from the hashtable to the
work queue, never try to acquire the queue lock while holding
the hashtable lock”

» Easier case: objects are in an acyclic structure
Can use the data structure to determine a fixed order

Example: “If holding a tree node’s lock, do not acquire other
tree nodes’ locks unless they are children in the tree”

11

Motivating memory-model issues

Tricky and unsynchronized concurrent
code; the assert below should never be capable of failing
C { . . .
int x = 0: It seems like it could never fail, despite
int v = 0; how it interleaves:
« xandy are initialized to 0 when the
void £ () { object is constructed; no concurrent
x = 1; on the object possible there
y = 1; « Xxandy can only change when f() is
} called; first x changes, then y
void g() { changes
int yy = ¥/ + g() get’s y’s value, then x’s
int xx = x; . n o , |
(XX >= V) ; For the assert to fail, yy's va} ue
} needs to be greater than xx’s

Interleavings

There is no interleaving of £ and g where the assertion fails

Proof #1: Exhaustively consider all possible orderings of
access to shared memory

x =1; int yy = y;
y = 1; int xx = x;
(xx >= yy);

Proof #2: Assume ! (xx>=yy) ; then yy==1 and xx==
But if yy==1, then yy=y happened after y=1

Since programs execute in order, xx=x happened after yy=y and x=1
happened before y=1

So by transitivity, xx==1. Contradiction.

Thread 1. £ Thread 2. g
For yy=1, the yy .
assignmentmust ¥ = 1; int yy = y;
happen after the
y assignment y = 1; int xx = x;

13 (xx >= yy);

Data Race => Wrong

However, the code has a data race
Two actually; potentially simultaneous accessto X & y

Recall: data race = unsynchronized read/write or
write/write of same location = bad

If your code has data races, you can’t reason about it
with interleavings

Even if there are no possible bad interleaving, your
program can still break

14

Data Race => Wrong

How?!?

Optimizations do weird things:
Reorder instructions

Maintain thread-local copies of shared memory, and don’t update them
immediately when changed

Optimizations occur both in compiler and hardware

Why?1?
In a word, ‘speed’

Can get great time savings this way; otherwise would sacrifice
these to support the questionable practice of data races

» Wil not rearrange insturctions when sequential dependencies
come into play; ex: Consider: x=17; y=x;

» Regarding updating of shared-memory between threads, there
are ways to force updates

15

The grand compromise

The compiler/hardware will never perform a memory reordering that
affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that
affects the result of a multi-threaded program

So: If no interleaving of your program has a data race, then you can
forget about all this reordering nonsense: the result will be
equivalent to some interleaving

Your job: Avoid data races

Compiler/hardware job: Give interleaving (illusion) if you do your job

16

Fixing our example

» Naturally, we can use synchronization to avoid data races

Correct ordering now guaranteed because no data races
Compiler knows it's not allowed to reorder these in strange ways

Now the assertion can’t fail

C {
int x = 0;
int vy = 0;
void £ () {
() { x=1; }
() {y=1;}
}
void g () {

int yy,xx;
() L yy=y/: }
() { xx

(xx >= yy);

I
»

A second fix:

» Java has fields: accesses don’t count as data races
Accesses will be ordered correctly
Updates shared correctly between threads

» Implementation: slower than regular fields, faster than locks

» Really for experts: generally avoid using it; use standard libraries
Instead

C {
» If you do plan to use int x = 0:
, look up Java’s : ’
documentation of it first int y = 0;
void f() {
x =1;
y = 1;
}
void g() {
int yy = vy,
int xx = x;
(xx >= yy)
}

18

Code that’s wrong

» Here is a more realistic example of code that’s wrong
Realistic because | wrote it, and not with the intention of it being

19

wrong...

Data race on stop; change made to stop in one thread not
guaranteed to be updated to others (for reasons of optimization)

No guarantee Thread 2 will ever stop; even after stop=true in

Thread 1
Would “probably work” despite being wrong
C {
boolean stop = false;
void £ () {
(!'stop) {
// do something..
}

}
void g() {

stop = didUserQuit() ;
}

Thread 1: £ ()

Thread 2: g()

Fixes: synchronize
access or make it
volatile

Concurrency summary

» Access to shared resources introduces new kinds of bugs:
Data races
Critical sections too small
Critical sections use wrong locks
Deadlocks

» Requires synchronization
Locks for mutual exclusion (common, various flavors)
Condition variables for signaling others (less common)

» New performance issues pop up as well:
Critical sections too large; covers expensive computation
Locks too coarse-grained; loses benefit of concurrent access

» Guidelines for correct use help avoid common pitfalls; stick
to them

20

