
CSE332: Data Abstractions

Lecture 25: Deadlocks and Additional

Concurrency Issues

Tyler Robison

Summer 2010

1

Where we are

2

 We‟ve covered basic concurrency, then some odds

and ends:

 Readers/writer locks

 Condition variables

 There are a couple more common issues we need to

hit:

 Deadlocks: Very common and very bad

 Additional problems that pop up due to concurrency

A New Concurrency Issue: Deadlocks

3

So far our bank account operations have been limited to one
account

Now consider a transfer method between accounts

As always, we‟d like to synchronize access (one lock per account
for a fine-grained locking scheme)

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

synchronized void transferTo(int amt,BankAccount a){

this.withdraw(amt);

a.deposit(amt);

}

}

Notice during call to a.deposit, thread holds 2 locks; first it‟s own

then the destination account‟s (both due to synchronized)

The Deadlock

4

For simplicity, suppose x and y are static fields holding accounts

What happens if symmetric transfers occur simultaneously between
accounts x & y?

acquire lock for x

do withdraw from y

block on lock for y

acquire lock for y

do withdraw from x

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Thread 2: y.transferTo(1,x)

Deadlock: Each thread is waiting for the other’s lock

Ex: The Dining Philosophers

5

 5 philosophers go out to dinner together at an Italian
restaurant

 Sit at a round table; one fork per setting

 When the spaghetti comes, each philosopher proceeds
to grab their right fork, then their left fork, then eats

 „Locking‟ for each fork results in a deadlock

Deadlock, in general

6

A deadlock occurs when there are threads T1, …, Tn

such that:

 For i=1,..,n-1, Ti is waiting for a resource held by

T(i+1)

 Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

 Can formalize as a graph of dependencies with cycles

Deadlock avoidance in programming amounts to

techniques to ensure a cycle can never arise

Back to our example

7

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not
synchronized
 Exposes intermediate state after withdraw before deposit

 May work out okay here, but would break other functionality
 If we were to get the total $ in all accounts at this point, it would be

wrong

2. Coarsen lock granularity: one lock for all accounts allowing
transfers between them
 Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always
acquire locks in the same order…
 Entire program should obey this order to avoid cycles

 Code acquiring only one lock is fine though

Ordering locks

8

class BankAccount {

…

private int acctNumber; // must be unique

void transferTo(int amt, BankAccount a) {

if(this.acctNumber < a.acctNumber)

synchronized(this) {

synchronized(a) {

this.withdraw(amt);

a.deposit(amt);

}}

else

synchronized(a) {

synchronized(this) {

this.withdraw(amt);

a.deposit(amt);

}}

}

}

Another example

9

From the Java standard library

class StringBuffer {

private int count;

private char[] value;

…

synchronized append(StringBuffer sb) {

int len = sb.length();

if(this.count + len > this.value.length)

this.expand(…);

sb.getChars(0,len,this.value,this.count);

}

synchronized getChars(int x, int, y,

char[] a, int z) {

“copy this.value[x..y] into a starting at z”

}

}

Two problems

10

Problem #1: Deadlock potential if two threads try to
append in opposite directions, just like in the bank-
account first example

Problem #2: The lock for sb is not held between calls to
sb.length and sb.getChars
 So sb could get longer

 Would cause append to throw an
ArrayBoundsException

Not easy to fix both problems without extra copying:
 Do not want unique ids on every StringBuffer

 Do not want one lock for all StringBuffer objects

Perspective

11

 Code like account-transfer and string-buffer append are
difficult to deal with for reasons of deadlock

 Easier case: different types of objects

 Can document a fixed order among types

 Example: “When moving an item from the hashtable to the
work queue, never try to acquire the queue lock while holding
the hashtable lock”

 Easier case: objects are in an acyclic structure

 Can use the data structure to determine a fixed order

 Example: “If holding a tree node‟s lock, do not acquire other
tree nodes‟ locks unless they are children in the tree”

Motivating memory-model issues

12

Tricky and surprisingly wrong unsynchronized concurrent
code; the assert below should never be capable of failing

class C {

private int x = 0;

private int y = 0;

void f() {

x = 1;

y = 1;

}

void g() {

int yy = y;

int xx = x;

assert(xx >= yy);

}

}

It seems like it could never fail, despite

how it interleaves:

• x and y are initialized to 0 when the

object is constructed; no concurrent

on the object possible there

• x and y can only change when f() is

called; first x changes, then y

changes

• g() get‟s y‟s value, then x‟s

• For the assert to fail, yy‟s value

needs to be greater than xx‟s

Interleavings

13

There is no interleaving of f and g where the assertion fails

 Proof #1: Exhaustively consider all possible orderings of
access to shared memory

 Proof #2: Assume !(xx>=yy); then yy==1 and xx==0

 But if yy==1, then yy=y happened after y=1

 Since programs execute in order, xx=x happened after yy=y and x=1
happened before y=1

 So by transitivity, xx==1. Contradiction.

x = 1;

y = 1;

int yy = y;

int xx = x;

assert(xx >= yy);

Thread 1: f Thread 2: g

x = 1;

y = 1;

int yy = y;

int xx = x;

assert(xx >= yy);

For yy=1, the yy

assignment must

happen after the

y assignment

Data Race => Wrong

14

However, the code has a data race

 Two actually; potentially simultaneous access to x & y

 Recall: data race = unsynchronized read/write or

write/write of same location = bad

If your code has data races, you can‟t reason about it

with interleavings

 Even if there are no possible bad interleaving, your

program can still break

Data Race => Wrong

15

How?!?
 Optimizations do weird things:

 Reorder instructions

 Maintain thread-local copies of shared memory, and don‟t update them
immediately when changed

 Optimizations occur both in compiler and hardware

Why?!?
 In a word, „speed‟

 Can get great time savings this way; otherwise would sacrifice
these to support the questionable practice of data races

 Will not rearrange insturctions when sequential dependencies
come into play; ex: Consider: x=17; y=x;

 Regarding updating of shared-memory between threads, there
are ways to force updates

The grand compromise

16

The compiler/hardware will never perform a memory reordering that
affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that
affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race, then you can
forget about all this reordering nonsense: the result will be
equivalent to some interleaving

Your job: Avoid data races

Compiler/hardware job: Give interleaving (illusion) if you do your job

Fixing our example

17

 Naturally, we can use synchronization to avoid data races

 Correct ordering now guaranteed because no data races

 Compiler knows it‟s not allowed to reorder these in strange ways

 Now the assertion can‟t fail

class C {

private int x = 0;

private int y = 0;

void f() {

synchronized(this) { x = 1; }

synchronized(this) { y = 1; }

}

void g() {

int yy,xx;

synchronized(this) { yy = y; }

synchronized(this) { xx = x; }

assert(xx >= yy);

}

}

A second fix: volatile

18

 Java has volatile fields: accesses don‟t count as data races
 Accesses will be ordered correctly

 Updates shared correctly between threads

 Implementation: slower than regular fields, faster than locks

 Really for experts: generally avoid using it; use standard libraries
instead

 If you do plan to use
volatile, look up Java‟s
documentation of it first

class C {

private volatile int x = 0;

private volatile int y = 0;

void f() {

x = 1;

y = 1;

}

void g() {

int yy = y;

int xx = x;

assert(xx >= yy);

}

}

Code that’s wrong

19

 Here is a more realistic example of code that‟s wrong
 Realistic because I wrote it, and not with the intention of it being

wrong…

 Data race on stop; change made to stop in one thread not
guaranteed to be updated to others (for reasons of optimization)

 No guarantee Thread 2 will ever stop; even after stop=true in
Thread 1

 Would “probably work” despite being wrong

class C {

boolean stop = false;

void f() {

while(!stop) {

// do something…

}

}

void g() {

stop = didUserQuit();

}

}

Thread 1: f()

Thread 2: g()

Fixes: synchronize

access or make it

volatile

Concurrency summary

20

 Access to shared resources introduces new kinds of bugs:
 Data races

 Critical sections too small

 Critical sections use wrong locks

 Deadlocks

 Requires synchronization
 Locks for mutual exclusion (common, various flavors)

 Condition variables for signaling others (less common)

 New performance issues pop up as well:
 Critical sections too large; covers expensive computation

 Locks too coarse-grained; loses benefit of concurrent access

 Guidelines for correct use help avoid common pitfalls; stick
to them

