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Where we are
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 We‟ve covered basic concurrency, then some odds 

and ends:

 Readers/writer locks

 Condition variables

 There are a couple more common issues we need to 

hit:

 Deadlocks: Very common and very bad

 Additional problems that pop up due to concurrency



A New Concurrency Issue: Deadlocks
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So far our bank account operations have been limited to one 
account

Now consider a transfer method between accounts

As always, we‟d like to synchronize access (one lock per account 
for a fine-grained locking scheme)

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

synchronized void transferTo(int amt,BankAccount a){

this.withdraw(amt);

a.deposit(amt);

}  

}

Notice during call to a.deposit, thread holds 2 locks; first it‟s own 

then the destination account‟s (both due to synchronized)



The Deadlock
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For simplicity, suppose x and y are static fields holding accounts

What happens if symmetric transfers occur simultaneously between 
accounts x & y?

acquire lock for x

do withdraw from y

block on lock for y

acquire lock for y

do withdraw from x

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Thread 2: y.transferTo(1,x)

Deadlock: Each thread is waiting for the other’s lock 



Ex: The Dining Philosophers
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 5 philosophers go out to dinner together at an Italian 
restaurant

 Sit at a round table; one fork per setting

 When the spaghetti comes, each philosopher proceeds 
to grab their right fork, then their left fork, then eats

 „Locking‟ for each fork results in a deadlock



Deadlock, in general
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A deadlock occurs when there are threads T1, …, Tn

such that:

 For i=1,..,n-1, Ti is waiting for a resource held by 

T(i+1)

 Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

 Can formalize as a graph of dependencies with cycles

Deadlock avoidance in programming amounts to 

techniques to ensure a cycle can never arise



Back to our example
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Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not 
synchronized
 Exposes intermediate state after withdraw before deposit

 May work out okay here, but would break other functionality
 If we were to get the total $ in all accounts at this point, it would be 

wrong

2. Coarsen lock granularity: one lock for all accounts allowing 
transfers between them
 Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always 
acquire locks in the same order…
 Entire program should obey this order to avoid cycles

 Code acquiring only one lock is fine though



Ordering locks
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class BankAccount {

…

private int acctNumber; // must be unique

void transferTo(int amt, BankAccount a) {

if(this.acctNumber < a.acctNumber)

synchronized(this) {

synchronized(a) {

this.withdraw(amt);

a.deposit(amt);

}}

else

synchronized(a) {

synchronized(this) {

this.withdraw(amt);

a.deposit(amt);

}}

}

}



Another example
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From the Java standard library

class StringBuffer {

private int count;

private char[] value;

…

synchronized append(StringBuffer sb) {

int len = sb.length();

if(this.count + len > this.value.length)

this.expand(…);

sb.getChars(0,len,this.value,this.count);

}

synchronized getChars(int x, int, y, 

char[] a, int z) {

“copy this.value[x..y] into a starting at z”

}

}



Two problems
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Problem #1: Deadlock potential if two threads try to 
append in opposite directions, just like in the bank-
account first example

Problem #2: The lock for sb is not held between calls to 
sb.length and sb.getChars
 So sb could get longer

 Would cause append to throw an 
ArrayBoundsException

Not easy to fix both problems without extra copying:
 Do not want unique ids on every StringBuffer

 Do not want one lock for all StringBuffer objects



Perspective
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 Code like account-transfer and string-buffer append are 
difficult to deal with for reasons of deadlock

 Easier case: different types of objects 

 Can document a fixed order among types

 Example: “When moving an item from the hashtable to the 
work queue, never try to acquire the queue lock while holding 
the hashtable lock”

 Easier case: objects are in an acyclic structure

 Can use the data structure to determine a fixed order

 Example: “If holding a tree node‟s lock, do not acquire other 
tree nodes‟ locks unless they are children in the tree”



Motivating memory-model issues
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Tricky and surprisingly wrong unsynchronized concurrent 
code; the assert below should never be capable of failing

class C {

private int x = 0;

private int y = 0;

void f() {

x = 1;

y = 1;

}

void g() {

int yy = y;

int xx = x;

assert(xx >= yy);

}   

}

It seems like it could never fail, despite 

how it interleaves:

• x and y are initialized to 0 when the 

object is constructed; no concurrent 

on the object possible there

• x and y can only change when f() is 

called; first x changes, then y 

changes

• g() get‟s y‟s value, then x‟s

• For the assert to fail, yy‟s value 

needs to be greater than xx‟s



Interleavings
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There is no interleaving of f and g where the assertion fails

 Proof #1: Exhaustively consider all possible orderings of 
access to shared memory

 Proof #2: Assume !(xx>=yy); then yy==1 and xx==0

 But if yy==1, then yy=y happened after y=1

 Since programs execute in order, xx=x happened after yy=y and x=1
happened before y=1

 So by transitivity, xx==1.  Contradiction.

x = 1;

y = 1;

int yy = y;

int xx = x;

assert(xx >= yy);

Thread 1: f Thread 2: g

x = 1;

y = 1;

int yy = y;

int xx = x;

assert(xx >= yy);

For yy=1, the yy

assignment must 

happen after the 

y assignment



Data Race => Wrong
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However, the code has a data race

 Two actually; potentially simultaneous access to x & y

 Recall: data race = unsynchronized read/write or 

write/write of same location = bad

If your code has data races, you can‟t reason about it 

with interleavings

 Even if there are no possible bad interleaving, your 

program can still break



Data Race => Wrong
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How?!?
 Optimizations do weird things:

 Reorder instructions

 Maintain thread-local copies of shared memory, and don‟t update them 
immediately when changed

 Optimizations occur both in compiler and hardware

Why?!?
 In a word, „speed‟

 Can get great time savings this way; otherwise would sacrifice 
these to support the questionable practice of data races

 Will not rearrange insturctions when sequential dependencies 
come into play; ex: Consider: x=17; y=x;

 Regarding updating of shared-memory between threads, there 
are ways to force updates



The grand compromise
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The compiler/hardware will never perform a memory reordering that 
affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that 
affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race, then you can 
forget about all this reordering nonsense: the result will be 
equivalent to some interleaving

Your job: Avoid data races

Compiler/hardware job: Give interleaving (illusion) if you do your job



Fixing our example
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 Naturally, we can use synchronization to avoid data races

 Correct ordering now guaranteed because no data races

 Compiler knows it‟s not allowed to reorder these in strange ways

 Now the assertion can‟t fail

class C {

private int x = 0;

private int y = 0;

void f() {

synchronized(this) { x = 1; }

synchronized(this) { y = 1; }

}

void g() {

int yy,xx;

synchronized(this) { yy = y; }

synchronized(this) { xx = x; }

assert(xx >= yy);

}   

}



A second fix: volatile
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 Java has volatile fields: accesses don‟t count as data races 
 Accesses will be ordered correctly

 Updates shared correctly between threads

 Implementation: slower than regular fields, faster than locks

 Really for experts: generally avoid using it; use standard libraries 
instead

 If you do plan to use 
volatile, look up Java‟s 
documentation of it first

class C {

private volatile int x = 0;

private volatile int y = 0;

void f() {

x = 1;

y = 1;

}

void g() {

int yy = y;

int xx = x;

assert(xx >= yy);

}   

}



Code that’s wrong
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 Here is a more realistic example of code that‟s wrong
 Realistic because I wrote it, and not with the intention of it being 

wrong…

 Data race on stop; change made to stop in one thread not 
guaranteed to be updated to others (for reasons of optimization)

 No guarantee Thread 2 will ever stop; even after stop=true in 
Thread 1

 Would “probably work” despite being wrong

class C {

boolean stop = false;

void f() {

while(!stop) {

// do something…

}

}

void g() {

stop = didUserQuit();

}   

}

Thread 1:  f()

Thread 2:  g()

Fixes: synchronize 

access or make it 

volatile



Concurrency summary
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 Access to shared resources introduces new kinds of bugs:
 Data races

 Critical sections too small

 Critical sections use wrong locks

 Deadlocks

 Requires synchronization
 Locks for mutual exclusion (common, various flavors)

 Condition variables for signaling others (less common) 

 New performance issues pop up as well:
 Critical sections too large; covers expensive computation

 Locks too coarse-grained; loses benefit of concurrent access

 Guidelines for correct use help avoid common pitfalls; stick 
to them


