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Where we are
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 We‟ve covered basic concurrency, then some odds 

and ends:

 Readers/writer locks

 Condition variables

 There are a couple more common issues we need to 

hit:

 Deadlocks: Very common and very bad

 Additional problems that pop up due to concurrency



A New Concurrency Issue: Deadlocks
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So far our bank account operations have been limited to one 
account

Now consider a transfer method between accounts

As always, we‟d like to synchronize access (one lock per account 
for a fine-grained locking scheme)

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

synchronized void transferTo(int amt,BankAccount a){

this.withdraw(amt);

a.deposit(amt);

}  

}

Notice during call to a.deposit, thread holds 2 locks; first it‟s own 

then the destination account‟s (both due to synchronized)



The Deadlock
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For simplicity, suppose x and y are static fields holding accounts

What happens if symmetric transfers occur simultaneously between 
accounts x & y?

acquire lock for x

do withdraw from y

block on lock for y

acquire lock for y

do withdraw from x

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Thread 2: y.transferTo(1,x)

Deadlock: Each thread is waiting for the other’s lock 



Ex: The Dining Philosophers
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 5 philosophers go out to dinner together at an Italian 
restaurant

 Sit at a round table; one fork per setting

 When the spaghetti comes, each philosopher proceeds 
to grab their right fork, then their left fork, then eats

 „Locking‟ for each fork results in a deadlock



Deadlock, in general
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A deadlock occurs when there are threads T1, …, Tn

such that:

 For i=1,..,n-1, Ti is waiting for a resource held by 

T(i+1)

 Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

 Can formalize as a graph of dependencies with cycles

Deadlock avoidance in programming amounts to 

techniques to ensure a cycle can never arise



Back to our example
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Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not 
synchronized
 Exposes intermediate state after withdraw before deposit

 May work out okay here, but would break other functionality
 If we were to get the total $ in all accounts at this point, it would be 

wrong

2. Coarsen lock granularity: one lock for all accounts allowing 
transfers between them
 Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always 
acquire locks in the same order…
 Entire program should obey this order to avoid cycles

 Code acquiring only one lock is fine though



Ordering locks
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class BankAccount {

…

private int acctNumber; // must be unique

void transferTo(int amt, BankAccount a) {

if(this.acctNumber < a.acctNumber)

synchronized(this) {

synchronized(a) {

this.withdraw(amt);

a.deposit(amt);

}}

else

synchronized(a) {

synchronized(this) {

this.withdraw(amt);

a.deposit(amt);

}}

}

}



Another example
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From the Java standard library

class StringBuffer {

private int count;

private char[] value;

…

synchronized append(StringBuffer sb) {

int len = sb.length();

if(this.count + len > this.value.length)

this.expand(…);

sb.getChars(0,len,this.value,this.count);

}

synchronized getChars(int x, int, y, 

char[] a, int z) {

“copy this.value[x..y] into a starting at z”

}

}



Two problems
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Problem #1: Deadlock potential if two threads try to 
append in opposite directions, just like in the bank-
account first example

Problem #2: The lock for sb is not held between calls to 
sb.length and sb.getChars
 So sb could get longer

 Would cause append to throw an 
ArrayBoundsException

Not easy to fix both problems without extra copying:
 Do not want unique ids on every StringBuffer

 Do not want one lock for all StringBuffer objects



Perspective
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 Code like account-transfer and string-buffer append are 
difficult to deal with for reasons of deadlock

 Easier case: different types of objects 

 Can document a fixed order among types

 Example: “When moving an item from the hashtable to the 
work queue, never try to acquire the queue lock while holding 
the hashtable lock”

 Easier case: objects are in an acyclic structure

 Can use the data structure to determine a fixed order

 Example: “If holding a tree node‟s lock, do not acquire other 
tree nodes‟ locks unless they are children in the tree”



Motivating memory-model issues

12

Tricky and surprisingly wrong unsynchronized concurrent 
code; the assert below should never be capable of failing

class C {

private int x = 0;

private int y = 0;

void f() {

x = 1;

y = 1;

}

void g() {

int yy = y;

int xx = x;

assert(xx >= yy);

}   

}

It seems like it could never fail, despite 

how it interleaves:

• x and y are initialized to 0 when the 

object is constructed; no concurrent 

on the object possible there

• x and y can only change when f() is 

called; first x changes, then y 

changes

• g() get‟s y‟s value, then x‟s

• For the assert to fail, yy‟s value 

needs to be greater than xx‟s



Interleavings
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There is no interleaving of f and g where the assertion fails

 Proof #1: Exhaustively consider all possible orderings of 
access to shared memory

 Proof #2: Assume !(xx>=yy); then yy==1 and xx==0

 But if yy==1, then yy=y happened after y=1

 Since programs execute in order, xx=x happened after yy=y and x=1
happened before y=1

 So by transitivity, xx==1.  Contradiction.

x = 1;

y = 1;

int yy = y;

int xx = x;

assert(xx >= yy);

Thread 1: f Thread 2: g

x = 1;

y = 1;

int yy = y;

int xx = x;

assert(xx >= yy);

For yy=1, the yy

assignment must 

happen after the 

y assignment



Data Race => Wrong
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However, the code has a data race

 Two actually; potentially simultaneous access to x & y

 Recall: data race = unsynchronized read/write or 

write/write of same location = bad

If your code has data races, you can‟t reason about it 

with interleavings

 Even if there are no possible bad interleaving, your 

program can still break



Data Race => Wrong
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How?!?
 Optimizations do weird things:

 Reorder instructions

 Maintain thread-local copies of shared memory, and don‟t update them 
immediately when changed

 Optimizations occur both in compiler and hardware

Why?!?
 In a word, „speed‟

 Can get great time savings this way; otherwise would sacrifice 
these to support the questionable practice of data races

 Will not rearrange insturctions when sequential dependencies 
come into play; ex: Consider: x=17; y=x;

 Regarding updating of shared-memory between threads, there 
are ways to force updates



The grand compromise
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The compiler/hardware will never perform a memory reordering that 
affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that 
affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race, then you can 
forget about all this reordering nonsense: the result will be 
equivalent to some interleaving

Your job: Avoid data races

Compiler/hardware job: Give interleaving (illusion) if you do your job



Fixing our example
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 Naturally, we can use synchronization to avoid data races

 Correct ordering now guaranteed because no data races

 Compiler knows it‟s not allowed to reorder these in strange ways

 Now the assertion can‟t fail

class C {

private int x = 0;

private int y = 0;

void f() {

synchronized(this) { x = 1; }

synchronized(this) { y = 1; }

}

void g() {

int yy,xx;

synchronized(this) { yy = y; }

synchronized(this) { xx = x; }

assert(xx >= yy);

}   

}



A second fix: volatile
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 Java has volatile fields: accesses don‟t count as data races 
 Accesses will be ordered correctly

 Updates shared correctly between threads

 Implementation: slower than regular fields, faster than locks

 Really for experts: generally avoid using it; use standard libraries 
instead

 If you do plan to use 
volatile, look up Java‟s 
documentation of it first

class C {

private volatile int x = 0;

private volatile int y = 0;

void f() {

x = 1;

y = 1;

}

void g() {

int yy = y;

int xx = x;

assert(xx >= yy);

}   

}



Code that’s wrong
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 Here is a more realistic example of code that‟s wrong
 Realistic because I wrote it, and not with the intention of it being 

wrong…

 Data race on stop; change made to stop in one thread not 
guaranteed to be updated to others (for reasons of optimization)

 No guarantee Thread 2 will ever stop; even after stop=true in 
Thread 1

 Would “probably work” despite being wrong

class C {

boolean stop = false;

void f() {

while(!stop) {

// do something…

}

}

void g() {

stop = didUserQuit();

}   

}

Thread 1:  f()

Thread 2:  g()

Fixes: synchronize 

access or make it 

volatile



Concurrency summary

20

 Access to shared resources introduces new kinds of bugs:
 Data races

 Critical sections too small

 Critical sections use wrong locks

 Deadlocks

 Requires synchronization
 Locks for mutual exclusion (common, various flavors)

 Condition variables for signaling others (less common) 

 New performance issues pop up as well:
 Critical sections too large; covers expensive computation

 Locks too coarse-grained; loses benefit of concurrent access

 Guidelines for correct use help avoid common pitfalls; stick 
to them


