
CSE332: Data Abstractions

Lecture 24: Readers/Writer Locks and

Condition Variables

Tyler Robison

Summer 2010

1

Concurrency: Where are we

2

Done:

 Programming with locks and critical sections

 Key guidelines and trade-offs

Now: More on facilitating concurrent access

 Readers/writer locks

 Specific type of lock that can allow for more efficient access

 Condition variables

 More efficient access for producer/consumer relationships

Reading vs. writing

3

Which of these is a problem?
 Concurrent writes of same object:

 Concurrent reads of same object:

 Concurrent read & write of same object:

 Concurrent read/write or write/write is a data race

So far:
 If concurrent write/write or read/write could occur, use

synchronization to ensure one-thread-at-a-time access

But:

 In some cases this is unnecessarily conservative

 If multiple threads want to access to „read‟, should be ok

Problem

Not a Problem

Problem

Example

4

Consider a hashtable with one coarse-grained lock
 So only one thread can perform any operation at a time

 Won‟t allow simultaneous reads, even though it‟s ok
conceptually

But suppose:
 There are many simultaneous lookup operations

 insert operations are very rare

 It‟d be nice to support multiple reads; we‟d do lots of waiting
otherwise

Assumptions: lookup doesn‟t mutate shared memory, and
doesn‟t have some different intermediate state
 Unlike our unusual peek implementation, which did a pop

then a push

Readers/writer locks

5

A new synchronization ADT: The readers/writer lock

 Idea: Allow any number of readers OR one writer

 A lock‟s states fall into three categories:
 “not held”

 “held for writing” by one thread

 “held for reading” by one or more threads

 new: make a new lock, initially “not held”

 acquire_write: block if currently “held for reading” or “held for
writing”, else make “held for writing”

 release_write: make “not held”

 acquire_read: block if currently “held for writing”, else
make/keep “held for reading” and increment readers count

 release_read: decrement readers count, if 0, make “not held”

0  writers  1 &&

0  readers &&
writers*readers==0

Pseudocode example (not Java)

6

class Hashtable<K,V> {

…

// coarse-grained, one lock for table

RWLock lk = new RWLock();

V lookup(K key) {

int bucket = hasher(key);

lk.acquire_read();

… read array[bucket] …

lk.release_read();

}

void insert(K key, V val) {

int bucket = hasher(key);

lk.acquire_write();

… read array[bucket] …

lk.release_write();

}

}

Readers/writer lock details

7

 A readers/writer lock implementation (“not our problem”)
usually gives priority to writers:
 Once a writer blocks, no readers arriving later will get the lock

before the writer

 Otherwise an insert could starve
 That is, it could wait indefinitely because of continuous stream of read

requests

 Side note: Notion of starvation used in other places: scheduling threads,
scheduling hard-drive accesses, etc.

 Re-entrant? Mostly an orthogonal issue

 Some libraries support upgrading from reader to writer
 Once held for reading, can grab for writing once other readers

release

 Why not use readers/writer locks with more fine-grained
locking, like on each bucket?
 Not wrong, but likely not worth it due to low contention

Readers/writer Locks in Java

8

Java‟s synchronized statement does not support
readers/writer

Instead, use this class:
java.util.concurrent.locks.ReentrantReadWriteLock

 Notes:
 Our pseudo-code used acquire_read, release_read,

acquire_write & release_write

 In Java, methods readLock and writeLock return objects that
themselves have lock and unlock methods

 Does not have writer priority or reader-to-writer upgrading

Motivating Condition Variables:

Producers and Consumers

9

Another means of allowing concurrent access is the condition

variable; before we get into that though, lets look at a situation

where we‟d need one:

 Imagine we have several producer threads and several consumer

threads

 Producers do work, toss their results into a buffer

 Consumers take results off of buffer as they come and process

them

 Ex: Multi-step computation

f e d cbuffer

back front

producer(s)

enqueue

consumer(s)

dequeue

Motivating Condition Variables:

Producers and Consumers

10

 Cooking analogy: Team one peels potatoes, team two

takes those and slices them up

 When a member of team one finishes peeling, they toss the

potato into a tub

 Members of team two pull potatoes out of the tub and dice

them up

f e d cbuffer

back front

producer(s)

enqueue

consumer(s)

dequeue

Motivating Condition Variables:

Producers and Consumers

11

 If the buffer is empty, consumers have to wait for producers

to produce more data

 If buffer gets full, producers have to wait for consumers to

consume some data and clear space

 We‟ll need to synchronize access; why?

 Data race; simultaneous read/write or write/write to

back/front

f e d cbuffer

back front

producer(s)

enqueue

consumer(s)

dequeue

First

attempt

12

class Buffer<E> {

E[] array = (E[])new Object[SIZE];

… // front, back fields, isEmpty, isFull methods

synchronized void enqueue(E elt) {

if(isFull())

???

else

… add to array and adjust back …

}

synchronized E dequeue() {

if(isEmpty()) {

???

else

… take from array and adjust front …

}

}

 One approach; if buffer is full on enqueue, or empty on
dequeue, throw an exception
 Not what we want here; w/ multiple threads taking & giving, these

will be common occurrences – should not handle like errors

 Common, and only temporary; will only be empty/full briefly

 Instead, we want threads to be pause until it can proceed

Pausing

13

 enqueue to a full buffer should not raise an exception
 Wait until there is room

 dequeue from an empty buffer should not raise an exception
 Wait until there is data

One approach to pausing: spin the lock: loop, checking until buffer is no
longer full (for enqueue case)
 Hold the lock for the check, then release and loop

Spinning works… but is very wasteful:
 We‟re using a processor just for looping & checking

 We‟re holding the lock a good deal of the time for that checking

 Cooking analogy: When waiting for work, team two members reach into tub
every few seconds to see if another potato is in there

void enqueue(E elt) {

while(true) {

synchronized(this) {

if(isFull()) continue;

… add to array and adjust back …

return;

}}}

// dequeue similar

What we want

14

 Better would be for a thread to wait until it can proceed

 Be notified when it should try again

 Thread suspended until then; in meantime, other threads run

 While waiting, lock is released; will be re-acquired later by one

notified thread

 Upon being notified, thread just drops in to see what condition it‟s

condition is in

 Team two members work on something else until they‟re told

more potatoes are ready

 Less contention for lock, and time waiting spent more efficiently

Condition Variables

15

 Like locks & threads, not something you can

implement on your own

 Language or library gives it to you

 An ADT that supports this: condition variable

 Informs waiting thread(s) when the condition that causes

it/them to wait has varied

 Terminology not completely standard; will mostly stick

with Java

Java approach: right idea; some problems in

the details

16

class Buffer<E> {

…

synchronized void enqueue(E elt) {

if(isFull())

this.wait(); // releases lock and waits

add to array and adjust back

if(buffer was empty)

this.notify(); // wake somebody up

}

synchronized E dequeue() {

if(isEmpty()) {

this.wait(); // releases lock and waits

take from array and adjust front

if(buffer was full)

this.notify(); // wake somebody up

}

}

Key ideas

17

 Condition variables: A Thread can wait, suspending operation and
relinquishing the lock, until it is notified

 wait:

 “Register” running thread as interested in being woken up

 Then atomically: release the lock and block

 When execution resumes after notify, thread again holds the lock

 notify:

 Pick one waiting thread and wake them up

 No guarantee woken up thread runs next, just that it is no longer blocked
on the condition – now waits for the lock

 If no thread is waiting, then do nothing

 Java weirdness: every object “is” a condition variable (and a lock)
 Just like how we can synchronize on any object

 Other languages/libraries often make them separate

Bug #1

18

Between the time a thread is notified and when it re-acquires
the lock, the condition can become false again!

synchronized void enqueue(E elt){

if(isFull())

this.wait();

add to array and adjust back

…

}

if(isFull())

this.wait();

add to array

T
im

e

Thread 2 (dequeue)Thread 1 (enqueue)

take from array

if(was full)
this.notify();

enqueue; full again

Thread 3 (enqueue)

Bug fix #1

19

Guideline: Always re-check the condition after re-gaining the lock
 If condition still not met, go back to waiting

 In fact, for obscure reasons, Java is technically allowed to notify a
thread for no reason

synchronized void enqueue(E elt) {

while(isFull())

this.wait();

…

}

synchronized E dequeue() {

while(isEmpty()) {

this.wait();

…

}

Bug #2

20

 If multiple threads are waiting, currently we only wake up
one
 Works for the most part, but what if 2 are waiting to enqueue,

and two quick dequeues occur before either gets to go?

 We‟d only notify once; other thread would wait forever

if(isFull())

this.wait();

…

T
im

e

Thread 2 (enqueue)Thread 1 (enqueue)

if(isFull())

this.wait();

// dequeue #1

if(buffer was full)

this.notify();

// dequeue #2

if(buffer was full)

this.notify();

Thread 3 (dequeues)

Bug fix #2

21

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll
 Wasteful waking is better than never waking up

 So why does notify exist?
 Well, it is faster when correct…

synchronized void enqueue(E elt) {

…

if(buffer was empty)

this.notifyAll(); // wake everybody up

}

synchronized E dequeue() {

…

if(buffer was full)

this.notifyAll(); // wake everybody up

}

Alternate approach

22

 An alternative is to call notify (not notifyAll) on every
enqueue / dequeue, not just when the buffer was empty / full

 Easy to implement: just remove the if statement

 Alas, makes our code subtly wrong since it‟s technically
possible that an enqueue and a dequeue are both waiting

 Idea: Under extreme cases, the fact that producers and
consumers share a condition variable can result in each waiting
for the other

 Details for the curious (not on the final):

 Buffer is full and so a huge # of enqueues (>SIZE) have to wait

 So each dequeue wakes up one enqueue, but say so many dequeue
calls happen so fast that the buffer is empty and a dequeue call waits

 The final notify may wake up a dequeue, which immediately has to wait
again, and now everybody will wait forever

 We can fix it; it just involves using a different condition variable for
producers and consumers – they still share the same lock though

Last condition-variable comments

23

 notify/notifyAll often called signal/broadcast

 Condition variables are subtle and harder to use than
locks

 Not as common as locks

 But when you need them, you need them
 Spinning and other work-arounds don‟t work well

 Fortunately, like most things in CSE332, the common
use-cases are already provided efficiently in libraries
 Example:
java.util.concurrent.ArrayBlockingQueue<E>

 All uses of condition variables hidden in the library; client just
calls put and take

