
CSE332: Data Abstractions

Lecture 24: Readers/Writer Locks and

Condition Variables

Tyler Robison

Summer 2010

1

Concurrency: Where are we

2

Done:

 Programming with locks and critical sections

 Key guidelines and trade-offs

Now: More on facilitating concurrent access

 Readers/writer locks

 Specific type of lock that can allow for more efficient access

 Condition variables

 More efficient access for producer/consumer relationships

Reading vs. writing

3

Which of these is a problem?
 Concurrent writes of same object:

 Concurrent reads of same object:

 Concurrent read & write of same object:

 Concurrent read/write or write/write is a data race

So far:
 If concurrent write/write or read/write could occur, use

synchronization to ensure one-thread-at-a-time access

But:

 In some cases this is unnecessarily conservative

 If multiple threads want to access to „read‟, should be ok

Problem

Not a Problem

Problem

Example

4

Consider a hashtable with one coarse-grained lock
 So only one thread can perform any operation at a time

 Won‟t allow simultaneous reads, even though it‟s ok
conceptually

But suppose:
 There are many simultaneous lookup operations

 insert operations are very rare

 It‟d be nice to support multiple reads; we‟d do lots of waiting
otherwise

Assumptions: lookup doesn‟t mutate shared memory, and
doesn‟t have some different intermediate state
 Unlike our unusual peek implementation, which did a pop

then a push

Readers/writer locks

5

A new synchronization ADT: The readers/writer lock

 Idea: Allow any number of readers OR one writer

 A lock‟s states fall into three categories:
 “not held”

 “held for writing” by one thread

 “held for reading” by one or more threads

 new: make a new lock, initially “not held”

 acquire_write: block if currently “held for reading” or “held for
writing”, else make “held for writing”

 release_write: make “not held”

 acquire_read: block if currently “held for writing”, else
make/keep “held for reading” and increment readers count

 release_read: decrement readers count, if 0, make “not held”

0 writers 1 &&

0 readers &&
writers*readers==0

Pseudocode example (not Java)

6

class Hashtable<K,V> {

…

// coarse-grained, one lock for table

RWLock lk = new RWLock();

V lookup(K key) {

int bucket = hasher(key);

lk.acquire_read();

… read array[bucket] …

lk.release_read();

}

void insert(K key, V val) {

int bucket = hasher(key);

lk.acquire_write();

… read array[bucket] …

lk.release_write();

}

}

Readers/writer lock details

7

 A readers/writer lock implementation (“not our problem”)
usually gives priority to writers:
 Once a writer blocks, no readers arriving later will get the lock

before the writer

 Otherwise an insert could starve
 That is, it could wait indefinitely because of continuous stream of read

requests

 Side note: Notion of starvation used in other places: scheduling threads,
scheduling hard-drive accesses, etc.

 Re-entrant? Mostly an orthogonal issue

 Some libraries support upgrading from reader to writer
 Once held for reading, can grab for writing once other readers

release

 Why not use readers/writer locks with more fine-grained
locking, like on each bucket?
 Not wrong, but likely not worth it due to low contention

Readers/writer Locks in Java

8

Java‟s synchronized statement does not support
readers/writer

Instead, use this class:
java.util.concurrent.locks.ReentrantReadWriteLock

 Notes:
 Our pseudo-code used acquire_read, release_read,

acquire_write & release_write

 In Java, methods readLock and writeLock return objects that
themselves have lock and unlock methods

 Does not have writer priority or reader-to-writer upgrading

Motivating Condition Variables:

Producers and Consumers

9

Another means of allowing concurrent access is the condition

variable; before we get into that though, lets look at a situation

where we‟d need one:

 Imagine we have several producer threads and several consumer

threads

 Producers do work, toss their results into a buffer

 Consumers take results off of buffer as they come and process

them

 Ex: Multi-step computation

f e d cbuffer

back front

producer(s)

enqueue

consumer(s)

dequeue

Motivating Condition Variables:

Producers and Consumers

10

 Cooking analogy: Team one peels potatoes, team two

takes those and slices them up

 When a member of team one finishes peeling, they toss the

potato into a tub

 Members of team two pull potatoes out of the tub and dice

them up

f e d cbuffer

back front

producer(s)

enqueue

consumer(s)

dequeue

Motivating Condition Variables:

Producers and Consumers

11

 If the buffer is empty, consumers have to wait for producers

to produce more data

 If buffer gets full, producers have to wait for consumers to

consume some data and clear space

 We‟ll need to synchronize access; why?

 Data race; simultaneous read/write or write/write to

back/front

f e d cbuffer

back front

producer(s)

enqueue

consumer(s)

dequeue

First

attempt

12

class Buffer<E> {

E[] array = (E[])new Object[SIZE];

… // front, back fields, isEmpty, isFull methods

synchronized void enqueue(E elt) {

if(isFull())

???

else

… add to array and adjust back …

}

synchronized E dequeue() {

if(isEmpty()) {

???

else

… take from array and adjust front …

}

}

 One approach; if buffer is full on enqueue, or empty on
dequeue, throw an exception
 Not what we want here; w/ multiple threads taking & giving, these

will be common occurrences – should not handle like errors

 Common, and only temporary; will only be empty/full briefly

 Instead, we want threads to be pause until it can proceed

Pausing

13

 enqueue to a full buffer should not raise an exception
 Wait until there is room

 dequeue from an empty buffer should not raise an exception
 Wait until there is data

One approach to pausing: spin the lock: loop, checking until buffer is no
longer full (for enqueue case)
 Hold the lock for the check, then release and loop

Spinning works… but is very wasteful:
 We‟re using a processor just for looping & checking

 We‟re holding the lock a good deal of the time for that checking

 Cooking analogy: When waiting for work, team two members reach into tub
every few seconds to see if another potato is in there

void enqueue(E elt) {

while(true) {

synchronized(this) {

if(isFull()) continue;

… add to array and adjust back …

return;

}}}

// dequeue similar

What we want

14

 Better would be for a thread to wait until it can proceed

 Be notified when it should try again

 Thread suspended until then; in meantime, other threads run

 While waiting, lock is released; will be re-acquired later by one

notified thread

 Upon being notified, thread just drops in to see what condition it‟s

condition is in

 Team two members work on something else until they‟re told

more potatoes are ready

 Less contention for lock, and time waiting spent more efficiently

Condition Variables

15

 Like locks & threads, not something you can

implement on your own

 Language or library gives it to you

 An ADT that supports this: condition variable

 Informs waiting thread(s) when the condition that causes

it/them to wait has varied

 Terminology not completely standard; will mostly stick

with Java

Java approach: right idea; some problems in

the details

16

class Buffer<E> {

…

synchronized void enqueue(E elt) {

if(isFull())

this.wait(); // releases lock and waits

add to array and adjust back

if(buffer was empty)

this.notify(); // wake somebody up

}

synchronized E dequeue() {

if(isEmpty()) {

this.wait(); // releases lock and waits

take from array and adjust front

if(buffer was full)

this.notify(); // wake somebody up

}

}

Key ideas

17

 Condition variables: A Thread can wait, suspending operation and
relinquishing the lock, until it is notified

 wait:

 “Register” running thread as interested in being woken up

 Then atomically: release the lock and block

 When execution resumes after notify, thread again holds the lock

 notify:

 Pick one waiting thread and wake them up

 No guarantee woken up thread runs next, just that it is no longer blocked
on the condition – now waits for the lock

 If no thread is waiting, then do nothing

 Java weirdness: every object “is” a condition variable (and a lock)
 Just like how we can synchronize on any object

 Other languages/libraries often make them separate

Bug #1

18

Between the time a thread is notified and when it re-acquires
the lock, the condition can become false again!

synchronized void enqueue(E elt){

if(isFull())

this.wait();

add to array and adjust back

…

}

if(isFull())

this.wait();

add to array

T
im

e

Thread 2 (dequeue)Thread 1 (enqueue)

take from array

if(was full)
this.notify();

enqueue; full again

Thread 3 (enqueue)

Bug fix #1

19

Guideline: Always re-check the condition after re-gaining the lock
 If condition still not met, go back to waiting

 In fact, for obscure reasons, Java is technically allowed to notify a
thread for no reason

synchronized void enqueue(E elt) {

while(isFull())

this.wait();

…

}

synchronized E dequeue() {

while(isEmpty()) {

this.wait();

…

}

Bug #2

20

 If multiple threads are waiting, currently we only wake up
one
 Works for the most part, but what if 2 are waiting to enqueue,

and two quick dequeues occur before either gets to go?

 We‟d only notify once; other thread would wait forever

if(isFull())

this.wait();

…

T
im

e

Thread 2 (enqueue)Thread 1 (enqueue)

if(isFull())

this.wait();

// dequeue #1

if(buffer was full)

this.notify();

// dequeue #2

if(buffer was full)

this.notify();

Thread 3 (dequeues)

Bug fix #2

21

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll
 Wasteful waking is better than never waking up

 So why does notify exist?
 Well, it is faster when correct…

synchronized void enqueue(E elt) {

…

if(buffer was empty)

this.notifyAll(); // wake everybody up

}

synchronized E dequeue() {

…

if(buffer was full)

this.notifyAll(); // wake everybody up

}

Alternate approach

22

 An alternative is to call notify (not notifyAll) on every
enqueue / dequeue, not just when the buffer was empty / full

 Easy to implement: just remove the if statement

 Alas, makes our code subtly wrong since it‟s technically
possible that an enqueue and a dequeue are both waiting

 Idea: Under extreme cases, the fact that producers and
consumers share a condition variable can result in each waiting
for the other

 Details for the curious (not on the final):

 Buffer is full and so a huge # of enqueues (>SIZE) have to wait

 So each dequeue wakes up one enqueue, but say so many dequeue
calls happen so fast that the buffer is empty and a dequeue call waits

 The final notify may wake up a dequeue, which immediately has to wait
again, and now everybody will wait forever

 We can fix it; it just involves using a different condition variable for
producers and consumers – they still share the same lock though

Last condition-variable comments

23

 notify/notifyAll often called signal/broadcast

 Condition variables are subtle and harder to use than
locks

 Not as common as locks

 But when you need them, you need them
 Spinning and other work-arounds don‟t work well

 Fortunately, like most things in CSE332, the common
use-cases are already provided efficiently in libraries
 Example:
java.util.concurrent.ArrayBlockingQueue<E>

 All uses of condition variables hidden in the library; client just
calls put and take

