CSE332: Data Abstractions

Lecture 24: Readers/Writer Locks and
Condition Variables

Tyler Robison
Summer 2010

Concurrency: Where are we

Done:
Programming with locks and critical sections
Key guidelines and trade-offs

Now: More on facilitating concurrent access
Readers/writer locks
Specific type of lock that can allow for more efficient access

Condition variables
More efficient access for producer/consumer relationships

Reading vs. writing

Which of these is a problem?
Concurrent writes of same object: Problem
Concurrent reads of same object: Not a Problem
Concurrent read & write of same object: Problem

» Concurrent read/write or write/write IS a data race

So far:

If concurrent write/write or read/write could occur, use
synchronization to ensure one-thread-at-a-time access

But:
In some cases this is unnecessarily conservative
If multiple threads want to access to ‘read’, should be ok

Example

Consider a hashtable with one coarse-grained lock
So only one thread can perform any operation at a time

Won't allow simultaneous reads, even though it's ok
conceptually

But suppose:
There are many simultaneous lookup operations
insert operations are very rare

It'd be nice to support multiple reads; we'd do lots of waiting
otherwise

Assumptions: 1lookup doesn’t mutate shared memory, and
doesn’t have some different intermediate state

Unlike our unusual peek implementation, which did a pop
then a push

Readers /writer locks

A new synchronization ADT: The O < writers <1 &&

O <readers &&

» ldea: Allow any number of readers OR one writer .
writers*readers==0

» Alock’s states fall into three categories:
“not held”
“held for writing” by one thread
“held for reading” by one or more threads

> make a new lock, initially “not held”

> block if currently “held for reading” or “held for
writing”, else make “held for writing”

b make “not held”

> block if currently “held for writing”, else

make/keep “held for reading” and increment readers count
> decrement readers count, if 0, make “not held”

Pseudocode example (not Java)

Hashtable<K,V> {

// coarse-grained, one lock for table

RWLock 1lk = RWLock () ;

V lookup (K key) ({
int bucket = hasher (key) ;
lk.acquire read();
. read array[bucket] ..
lk.release read()

}

void insert (K key, V wval) {
int bucket = hasher (key) ;
lk.acquire write();
. read array[bucket] ..
lk.release write();

}

Readers/writer lock details

» Areaders/writer lock implementation (“not our problem”)
usually gives priority to writers:
Once a writer blocks, no readers arriving later will get the lock
before the writer

Otherwise an insert could starve
That is, it could wait indefinitely because of continuous stream of read
requests

Side note: Notion of starvation used in other places: scheduling threads,
scheduling hard-drive accesses, etc.

» Re-entrant? Mostly an orthogonal issue

» Some libraries support upgrading from reader to writer
Once held for reading, can grab for writing once other readers
release

» Why not use readers/writer locks with more fine-grained

locking, like on each bucket?
Not wrong, but likely not worth it due to low contention

Readers/writer Locks in Java

Java’s statement does not support
readers/writer

Instead, use this class:
java.util.concurrent.locks.ReentrantReadWriteLock

» Notes:

Our pseudo-code used acquire_read, release_read,
acquire_write & release_write

In Java, methods readlLock and writeLock return objects that
themselves have lock and unlock methods

Does not have writer priority or reader-to-writer upgrading

Motivating Condition Variables:

Producers and Consumers

Another means of allowing concurrent access is the condition
variable; before we get into that though, lets look at a situation

where we’d need one:
» Imagine we have several producer threads and several consumer
threads
Producers do work, toss their results into a buffer
Consumers take results off of buffer as they come and process
them
Ex: Multi-step computation

producer(s) Puffer flejdjc consumer(s)
enqueue ““‘7 baClI fro ntT dequeue
|
|
|

Motivating Condition Variables:
Producers and Consumers

» Cooking analogy: Team one peels potatoes, team two
takes those and slices them up

When a member of team one finishes peeling, they toss the
potato into a tub

Members of team two pull potatoes out of the tub and dice

them up
producer(s) Puffer flejdjc consumer(s)
enqueue ““‘7 baClI frontT **s, 8 dequeue
|
|
|

10

Motivating Condition Variables:
Producers and Consumers

producer(s) Puffer flejdjc consumer(s)
enqueue 5 4 baclI fro ntT dequeue

By

» If the buffer is empty, consumers have to wait for producers
to produce more data

» If buffer gets full, producers have to wait for consumers to
consume some data and clear space
» We’'ll need to synchronize access; why?

Data race; simultaneous read/write or write/write to
back/front

11

Buffer<iE> {
E[] array = (E[]) Object[SIZE];
.. // front, back fields, isEmpty, isFull methods
void enqueue (E elt) {
(isFull())

First ?2?
attempt .. add to array and adjust back ..

E dequeue () {
(isEmpty ()) {

2997

. take from array and adjust front ..

}
}

» One approach; if buffer is full on enqueue, or empty on
dequeue, throw an exception

Not what we want here; w/ multiple threads taking & giving, these
will be common occurrences — should not handle like errors

Common, and only temporary; will only be empty/full briefly
Instead, we want threads to be pause until it can proceed
12

Pausing

» enqueue 10 a full buffer should not raise an exception
Wait until there is room

» dequeue from an empty buffer should not raise an exception
Wait until there is data

One approach to pausing: spin the lock: loop, checking until buffer is no
longer full (for enqueue case)

Hold the lock for the check, then release and loop

Spinning works... but is very wasteful:
We’'re using a processor just for looping & checking
We’'re holding the lock a good deal of the time for that checking

Cooking analogy: When waiting for work, team two members reach into tub
every few seconds to see if another potato is in there

void enqueue (E elt) {
(true) {
() |
i1f (isFull()) ;
. add to array and adjust back ..

4

}h)

13 // dequeue similar

What we want
» Better would be for a thread to wait until it can proceed

14

Be notified when it should try again
Thread suspended until then; in meantime, other threads run

While waiting, lock is released; will be re-acquired later by one
notified thread

Upon being notified, thread just drops in to see what condition it’s
condition is in

Team two members work on something else until they’re told
more potatoes are ready

Less contention for lock, and time waiting spent more efficiently

Condition Variables

» Like locks & threads, not something you can
Implement on your own
Language or library gives it to you

» An ADT that supports this:

Informs waliting thread(s) when the condition that causes
It/them to wait has varied

» Terminology not completely standard; will mostly stick
with Java

15

Java approach: right idea; some problems in
the details

Buffer<iE> {

void enqueue (E elt) {
(isFull())
this.wait(); // releases lock and waits
add to array and adjust back
(buffer was empty)
this.notify(); // wake somebody up

E dequeue() {
(isEmpty ()) {
this.wait(); // releases lock and waits
take from array and adjust front
(buffer was full)
this.notify(); // wake somebody up

16

Key ideas

» Condition variables: A Thread can wait, suspending operation and
relinquishing the lock, until it is notified

>
“Register” running thread as interested in being woken up
Then atomically: release the lock and block
When execution resumes after notify, thread again holds the lock

Pick one waiting thread and wake them up

No guarantee woken up thread runs next, just that it is no longer blocked
on the condition — now walits for the lock

If no thread is waiting, then do nothing

» Java weirdness: every object “is” a condition variable (and a lock)
Just like how we can synchronize on any object
Other languages/libraries often make them separate

17

Time

Bug #1

void enqueue (E elt) {
(1sFull())
this.wait () ;
add to array and adjust back

}

Between the time a thread is notified and when it re-acquires
the lock, the condition can become false again!

Thread 1 (enqueue) Thread 2 (dequeue) Thread 3 (enqueue)

(isFull())
this.wait () ;
take from array

(was full)
this.notify () ;

enqueue,; full again

add to array

Bug fix #1

void enqueue (E elt) {
while (isFull())
.wait () ;

E dequeue() {
while (isEmpty ()) {
.wait();

Guideline: Always re-check the condition after re-gaining the lock
If condition still not met, go back to waiting

In fact, for obscure reasons, Java is technically allowed to notify a
thread for no reason

19

Bug #2

» If multiple threads are waiting, currently we only wake up
one

Works for the most part, but what if 2 are waiting to enqueue,
and two quick dequeues occur before either gets to go?

We'd only notify once; other thread would wait forever

Thread 1 (enqueue) Thread 2 (enqueue) Thread 3 (dequeues)
(isFull()) (isFull())
this.wait () ; this.wait () ;
// dequeue #1
(buffer was full)
this.notify () ;

Time

v // dequeue #2
(buffer was full)
this.notify () ;

20

Bug fix #2

void enqueue (E elt) {

(buffer was empty)
this.notifyAll(); // wake everybody up

E dequeue() {

(buffer was full)
this.notifyAll(); // wake everybody up

}

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyall
Wasteful waking is better than never waking up
» S0 why does notify exist?
Well, it is faster when correct...

21

Alternate approach

» An alternative is to call notify (not notifyAll) on every
enqueue / dequeue, not just when the buffer was empty / full

Easy to implement: just remove the i£f statement

» Alas, makes our code subtly since it’s technically
possible that an enqueue and a dequeue are both waiting
ldea: Under extreme cases, the fact that producers and
consumers share a condition variable can result in each waiting
for the other
Details for the curious (not on the final):
Buffer is full and so a huge # of enqueues (>SIZE) have to wait

So each dequeue wakes up one enqueue, but say so many dequeue
calls happen so fast that the buffer is empty and a dequeue call waits

The final notify may wake up a dequeue, which immediately has to wait
again, and now everybody will wait forever

We can fix it; it just involves using a different condition variable for
producers and consumers — they still share the same lock though

22

Last condition-variable comments
» notify/notifyAll often called signal/broadcast

» Condition variables are subtle and harder to use than
locks

» Not as common as locks

» But when you need them, you need them
Spinning and other work-arounds don’t work well

» Fortunately, like most things in CSE332, the common
use-cases are already provided efficiently in libraries

Example:
java.util.concurrent.ArrayBlockingQueue<E>

All uses of condition variables hidden in the library; client just
calls put and take

23

