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Concurrency: where are we
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Done:
 The semantics of locks

 Locks in Java

 Using locks for mutual exclusion: bank-account example

This lecture:
 Race conditions

 More bad interleavings (learn to spot these!)

 Guidelines for shared-memory and using locks correctly

 Coarse-grained vs. fine-grained

Upcoming lectures:
 Readers/writer locks

 Deadlock

 Condition variables

 More data races and memory-consistency models



Race Conditions
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A race condition occurs when the computation result 
depends on scheduling (how threads are interleaved)
 If T1 and T2 happened to get scheduled in a certain way, 

things go wrong

 We, as programmers, cannot control scheduling of threads; 
result is that we need to write programs that work independent 
of scheduling

Race conditions are bugs that exist only due to concurrency
 No interleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be 
seen by another thread; screws up other thread
 Consider a „partial‟ insert in a linked list; say, a new node has 

been added to the end, but „back‟ and „count‟ haven‟t been 
updated



Data Races
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 A data race is a specific type of race condition that 
can happen in 2 ways:
 Two different threads can potentially write a variable at 

the same time

 One thread can potentially write a variable while another 
reads the variable

 Simultaneous reads are fine; not a data race, and nothing 
bad would happen

 „Potentially‟ is important; we say the code itself has a data 
race – it is independent of an actual execution

 Data races are bad, but we can still have a race 
condition, and bad behavior, when no data races are 
present



Example of a Race Condition, but not a Data 

Race
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class Stack<E> {

…

synchronized boolean isEmpty() { … }

synchronized void push(E val) { … }

synchronized E pop(E val) { 

if(isEmpty())

throw new StackEmptyException();

…

}

E peek() {

E ans = pop();

push(ans);

return ans;

}

}

 Maybe we‟re 
writing peek in an 

external class that 

only has access to 
Stack‟s push and 

pop

 In a sequential 

world, this code is 

of questionable 

style, but correct



Problems with peek
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 peek has no overall effect on the shared data
 It is a “reader” not a “writer”

 State should be the same after it executes as before

 But the way it‟s implemented creates an inconsistent 
intermediate state
 Calls to push and pop are synchronized so there are no 

data races on the underlying array/list/whatever
 Can‟t access „top‟ simultaneously

 There is still a race condition though

 This intermediate state should not be exposed; errors 
can occur

E peek() {

E ans = pop();

push(ans);

return ans;

}



peek and isEmpty
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 Property we want: If there has been a push and no 

pop, then isEmpty returns false

 With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2Thread 1 (peek)

It can be violated if things occur in this order:

1. T2: push(x)

2. T1: pop()

3. T2: boolean b = isEmpty()



peek and push
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 Property we want: Values are returned from pop in 

LIFO order (it is a stack, after all)

 With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2Thread 1 (peek)



peek and push
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 Property we want: Values are returned from pop in 

LIFO order (it is a stack, after all)

 With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2Thread 1 (peek)



Alternatively
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 Property we want: Values are returned from pop in 

LIFO order (it is a stack, after all)

 With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2Thread 1 (peek)

push(x)

push(y)

E e = pop()



peek and peek
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 Property we want: peek doesn‟t throw an exception 

unless stack is empty

 With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)



peek and peek
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 Property we want: peek doesn‟t throw an exception 

unless stack is empty

 With peek as written, property can be violated – how?

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 (peek)

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)



The fix
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 In short, peek needs synchronization to disallow interleavings
 The key is to make a larger critical section

 That intermediate state of peek needs to be protected

 Use re-entrant locks; will allow calls to push and pop

 Code on right is a peek external to the Stack class

class Stack<E> {

…

synchronized E peek(){

E ans = pop();

push(ans);

return ans;

}

}

class C {

<E> E myPeek(Stack<E> s){

synchronized (s) {

E ans = s.pop();

s.push(ans);

return ans;

}

}

}



The wrong “fix”
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 Focus so far: problems from peek doing writes that 

lead to an incorrect intermediate state

 Tempting but wrong: If an implementation of peek

(or isEmpty) does not write anything, then maybe 

we can skip the synchronization?

 Does not work due to data races with push and 

pop…



Example, again (no resizing or checking)
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class Stack<E> {

private E[] array = (E[])new Object[SIZE];

int index = -1;

boolean isEmpty() { // unsynchronized: wrong!

return index==-1; 

}

synchronized void push(E val) {

array[++index] = val;

}

synchronized E pop(E val) { 

return array[index--];

}

E peek() { // unsynchronized: wrong!

return array[index];

}

}



Why wrong?
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 It looks like isEmpty and peek can “get away with this” 
since push and pop adjust the state “in one tiny step”

 But this code is still wrong and depends on language-
implementation details you cannot assume

 Even “tiny steps” may require multiple steps in the 
implementation: array[++index] = val probably takes 
at least two steps

 Code has a data race, which may result in strange behavior 

 Compiler optimizations may break it in ways you had not anticipated

 We‟ll talk about this more in the future

 Moral: Don‟t introduce a data race, even if every 
interleaving you can think of is correct; your reasoning 
about programming isn‟t guaranteed to hold true if there is 
a race condition



Getting it right
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Avoiding race conditions on shared resources is 

difficult

 What „seems fine‟ in a sequential world can get you into 

trouble when race conditions are involved

 Decades of bugs has led to some conventional wisdom: 

general techniques that are known to work

Rest of lecture distills key ideas and trade-offs

 Parts paraphrased from “Java Concurrency in Practice”

 But none of this is specific to Java or a particular book!



An excellent guideline to follow
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For every memory location (e.g., object field) in your 
program, you must obey at least one of the following:

1. Thread-local: Don‟t use the location in > 1 thread

2. Immutable: Don‟t write to the memory location

3. Synchronized: Use synchronization to control 
access to the location

all memory thread-local

memory
immutable

memory

need 

synchronization



Thread-local
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Whenever possible, don‟t share resources

 Easier to have each thread have its own thread-local
copy of a resource than to have one with shared updates

 Example: Random objects

 This is correct only if threads don‟t need to communicate 
through the resource

 Note: Since each call-stack is thread-local, never need to 
synchronize on local variables

In typical concurrent programs, the vast majority of 
objects should be thread-local: shared-memory 
should be rare – minimize it



Immutable
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Whenever possible, don‟t update objects
 Make new objects instead

 One of the key tenets of functional programming (take a 
PL class for more)
 Generally helpful to avoid side-effects

 Much more helpful in a concurrent setting

 If a location is only read, never written, then no 
synchronization is necessary!
 Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation –
minimize it



The rest: Keep it synchronized
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After minimizing the amount of memory that is (1) thread-shared 
and (2) mutable, we need guidelines for how to use locks to 
keep other data consistent

Guideline #0: No data races

 Never allow two threads to read/write or write/write the same 
location at the same time
 Even if it „seems safe‟

Necessary: In Java or C, a program with a data race is almost 
always  wrong

Even if our reasoning tells us otherwise; ex: compiler 
optimizations

Not sufficient: Our peek example had no data races, and it‟s still 
wrong



Consistent Locking
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Guideline #1: For each location needing synchronization, 
have a lock that is always held when reading or writing 
the location

 We say the lock guards the location

 The same lock can (and often should) guard multiple 
locations (ex: multiple methods in a class)

 Clearly document the guard for each location

 In Java, often the guard is the object containing the 
location
 this inside the object‟s methods



Consistent Locking continued
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 The mapping from locations to guarding locks is conceptual, and 
is something that you have to enforce as a programmer

 It partitions the shared-&-mutable locations into “which lock”

Consistent locking is:

• Not sufficient: It prevents all data races, but still allows higher-

level race conditions (exposed intermediate states)

– Our peek example used consistent locking

• Not necessary: Can change the locking protocol dynamically…



Beyond consistent locking
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 Consistent locking is an excellent guideline
 A “default assumption” about program design

 You will save yourself many a headache using this 
guideline

 But it isn‟t required for correctness: Can have different 
program phases use different locking techniques
 Provided all threads coordinate moving to the next phase

 Example from Project 3, Version 5:
 A shared grid being updated, so use a lock for each entry

 But after the grid is filled out, all threads except 1 terminate
 So synchronization no longer necessary (thread local)

 And later the grid will never be written to again (immutable)
 Makes synchronization doubly unnecessary



Lock granularity; coarse vs fine grained
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Coarse-grained:  Fewer locks, i.e., more objects per 
lock
 Example: One lock for entire data structure (e.g., linked list)

 Example: One lock for all bank accounts

Fine-grained: More locks, i.e., fewer objects per lock
 Example: One lock per data element (e.g., array index)

 Example: One lock per bank account

“Coarse-grained vs. fine-grained” is really a continuum

…

…



Trade-offs
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Coarse-grained advantages
 Simpler to implement

 Faster/easier to implement operations that access multiple 
locations (because all guarded by the same lock)

 Much easier for operations that modify data-structure shape

Fine-grained advantages
 More simultaneous access (performance when coarse-grained 

would lead to unnecessary blocking)

 Can make multi-node operations more difficult: say, rotations in 
an AVL tree

Guideline #2: Start with coarse-grained (simpler) and move 
to fine-grained (performance) only if contention on the 
coarser locks becomes an issue



Example: Hashtable (say, using separate 

chaining)
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 Coarse-grained: One lock for entire hashtable

 Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup?

Fine-grained; allows simultaneous accesss to diff. 
buckets

Which makes implementing resize easier?

Coarse-grained; just grab one lock and proceed

If a hashtable has a numElements field, maintaining it will 
destroy the benefits of using separate locks for each bucket… 
why?

Updating it each insert w/o a lock would be a data race



Critical-section granularity
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A second, orthogonal granularity issue is critical-section 
size

 How much work to do while holding lock(s)

If critical sections run for too long:

 Performance loss because other threads are blocked

If critical sections are too short:

 Bugs because you broke up something where other threads 
should not be able to see intermediate state

Guideline #3: Don‟t do expensive computations or I/O in 
critical sections, but also don‟t introduce race conditions; 
keep it as small as possible but still be correct



Example
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Suppose we want to change the value for a key in a 
hashtable without removing it from the table
 Assume lock guards the whole table

 expensive() takes in the old value, and computes a new 
one, but takes a long time

synchronized(lock) {

v1 = table.lookup(k);

v2 = expensive(v1);

table.remove(k);

table.insert(k,v2);

}

Papa Bear’s 

critical section was 

too long

(table locked 

during expensive 

call)



Example
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synchronized(lock) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

table.remove(k);

table.insert(k,v2);

}

Mama Bear’s critical 

section was too short

(if another thread  

updated the entry, we 

will lose an update)

Suppose we want to change the value for a key in a 
hashtable without removing it from the table
 Assume lock guards the whole table

 expensive() takes in the old value, and computes a new 
one, but takes a long time



Example
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done = false;

while(!done) {

synchronized(lock) {

v1 = table.lookup(k);

} 

v2 = expensive(v1);

synchronized(lock) {

if(table.lookup(k)==v1) {

done = true;

table.remove(k);

table.insert(k,v2);

}}}

Baby Bear’s critical 

section was just 

right

(if another update

occurred, try our

update again)

Suppose we want to change the value for a key in a 
hashtable without removing it from the table
 Assume lock guards the whole table

 expensive() takes in the old value, and computes a new 
one, but takes a long time



Atomicity
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An operation is atomic if no other thread can see it partly 

executed

 Atomic as in “(appears) indivisible”

 Typically want ADT operations atomic

Guideline #4:  Think in terms of what operations need to be 

atomic

 Make critical sections just long enough to preserve atomicity

 Then design the locking protocol to implement the critical 

sections correctly

That is: Think about atomicity first and locks second



Don’t roll your own
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 It is rare that you should write your own data structure

 Provided in standard libraries: Java, C++, etc.

 Companies like Google have their own libraries they use

 Point of CSE332 is to understand the key trade-offs, 
abstractions and analysis

 Especially true for concurrent data structures

 Far too difficult to provide fine-grained synchronization without 
data races

 Standard thread-safe libraries like ConcurrentHashMap
written by world experts

Guideline #5: Use built-in libraries whenever they meet 
your needs


