
CSE332: Data Abstractions

Lecture 22: Shared-Memory Concurrency

and Mutual Exclusion

Tyler Robison

Summer 2010

1

Toward sharing resources (memory)

2

So far we‟ve looked at parallel algorithms using fork-join

ForkJoin algorithms all had a very simple structure to avoid
race conditions
 Each thread had memory “only it accessed”

 Example: array sub-range

 Array variable itself was treated as „read-only‟ in parallel portion

 Result of forked process not accessed until after join() called

 So the structure (mostly) ensured that bad simultaneous access
wouldn‟t occur

Strategy won‟t work well when:
 Memory accessed by threads is overlapping or unpredictable

 Threads are doing independent tasks needing access to same
resources (rather than implementing the same algorithm)

We‟ll need to coordinate resources for them to be of use

What could go wrong?

3

 Imagine 2 threads, running

at the same time, both with

access to a shared linked-

list based queue (initially

empty)

enqueue(x) {

if(back==null){

back=new Node(x);

front=back;

}

else{

back.next = new Node(x);

back = back.next;

}

}

 Each own program counter (and heap, etc.)

 Queue is shared, so they both indirectly use the same „front‟ and
„back‟ (which is the whole point of sharing the queue)

 We have no guarantee what happens first between different
threads; can (and will) arbitrarily „interrupt‟ each other

 Many things can go wrong: say, one tries to enqueue “a”, the other
“b”, and both verify that back is „null‟ before other sets back

 Result: One assignment of back will be „forgotten‟

 In general, any „interleaving‟ of results is possible if enqueue were
called at the same time for both

Concurrent Programming

4

Concurrency: Allowing simultaneous or interleaved access
to shared resources from multiple clients

Requires coordination, particularly synchronization to avoid
incorrect simultaneous access: make somebody block
(wait) until resource is free
 join isn‟t going to work here

 We want to block until another thread is “done using what we
need” not “completely done executing”

Even correct concurrent applications are usually highly
non-deterministic
 How threads are scheduled affects what operations from other

threads they see when

 Non-repeatability complicates testing and debugging

Why threads?

5

Use of threads not always to increase performance

(though they can be)

Also used for:

 Code structure for responsiveness

 Example: Respond to GUI events in one thread while

another thread is performing an expensive computation

 Failure isolation

 Convenient structure if want to interleave multiple tasks and

don‟t want an exception in one to stop the other

Canonical example

6

 Simple code for a bank account

 Correct in a single-threaded world

class BankAccount {

private int balance = 0;

int getBalance() { return balance; }

void setBalance(int x) { balance = x; }

void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

}

… // other operations like deposit, etc.

}

Interleaving

7

Suppose we have 2 threads, T1 & T2:
 Thread T1 calls x.withdraw(100)

 Thread T2 calls y.withdraw(100)

If second call starts before first finishes, we say the calls
interleave

 Could happen even with one processor since a thread can be
pre-empted at any point for time-slicing

 T1 runs for 50 ms, pauses somewhere, T2 picks up for 50ms

If x and y refer to different accounts, no problem

 “You cook in your kitchen while I cook in mine”

 But if x and y alias, weird things can occur

A bad interleaving

8

Imagine two interleaved withdraw(100) calls on the same account
 Assume initial balance 150

 From the code we saw before, this should cause a WithdrawTooLarge
exception

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

Instead of an exception,

we have a “Lost withdraw”

But if we had ‘if(amount>getBalance())’

instead, this wouldn’t have happened… right?

Incorrect “fix”

9

It is tempting and almost always wrong to fix a bad interleaving by
rearranging or repeating operations, such as:

void withdraw(int amount) {

if(amount > getBalance())

throw new WithdrawTooLargeException();

// maybe balance changed

setBalance(getBalance() – amount);

}

This fixes nothing!

• Narrows the problem by one statement

• (Not even that since the compiler could turn it back into the

old version because you didn‟t indicate need to synchronize)

• And now a negative balance is possible – why?

Mutual exclusion

10

The sane fix: At most one thread withdraws from account A at a
time
 Exclude other simultaneous operations on A too (e.g., deposit)

 Other combinations of simultaneous operations on „balance‟
could break things

 „One at a time‟ is embodied in the idea of „mutual exclusion‟

Mutual exclusion: One thread doing something with a
resource (here: an account) means another thread must wait
 Define „critical sections‟; areas of code that are mutually

exclusive

Programmer (that is, you) must implement critical sections
 “The compiler” has no idea what interleavings should or shouldn‟t

be allowed in your program

 Buy you need language primitives to do it!

 Like with Thread start() & join(), you can‟t implement these
yourself in Java

Wrong!

11

Why can‟t we implement our own mutual-exclusion
protocol?
 Say we tried to coordinate it ourselves, using „busy‟:

class BankAccount {

private int balance = 0;

private boolean busy = false;

void withdraw(int amount) {

while(busy) { /* “spin-wait” */ }

busy = true;

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

busy = false;

}

// deposit would spin on same boolean

}

Still just moved the problem!

12

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

“Lost withdraw” –

unhappy bank

Time does elapse between checking ‘busy’ and

setting ‘busy’; can be interrupted there

What we need

13

 To resolve this issue, we‟ll need help from the language

 One basic solution: Locks
 Still on a conceptual level at the moment, „Lock‟ is not a Java

class*

 An ADT with operations:
 new: make a new lock

 acquire: If lock is “not held”, makes it “held”
 Blocks if this lock is already “held”

 Checking & setting happen together, and cannot be interrupted

 Fixes problem we saw before

 release: makes this lock “not held”
 If multiple threads are blocked on it, exactly 1 will acquire it

Why that works

14

 Lock: ADT with operations new, acquire,
release

 The lock implementation ensures that given
simultaneous acquires and/or releases, a correct
thing will happen
 Example: If we have two „acquires‟: one will “win” and one

will block

 How can this be implemented?
 Need to “check and update” “all-at-once”

 Uses special hardware and O/S support
 See CSE471 and CSE451

 In CSE332, we take this as a primitive and use it

Almost-correct pseudocode

15

class BankAccount {

private int balance = 0;

private Lock lk = new Lock();

…

void withdraw(int amount) {

lk.acquire(); /* may block */

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

lk.release();

}

// deposit would also acquire/release lk

}

Note: ‘Lock’ is not an

actual Java class

One problem with this code…

Some potential Lock mistakes

16

 A lock is a very primitive mechanism
 Still up to you to use correctly to implement critical sections

 Lots of little things can go wrong, and completely break your program

 Incorrect: Forget to release a lock (blocks other threads forever!)
 Previous slide is wrong because of the exception possibility!

 Incorrect: Use different locks for withdraw and deposit
 Mutual exclusion works only when using same lock

 With one lock for each, we could have a simultaneous withdraw &
deposit; could still break

 Poor performance: Use same lock for every bank account
 No simultaneous withdrawals from different accounts

if(amount > b) {
lk.release(); // hard to remember!
throw new WithdrawTooLargeException();

}

Other operations

17

 If withdraw and deposit use the same lock (and they
use it correctly), then simultaneous calls to these
methods are properly synchronized

 But what about getBalance and setBalance?
 Assume they‟re public, which may be reasonable

 If they don‟t acquire the same lock, then a race between
setBalance and withdraw could produce a wrong
result

 If they do acquire the same lock, then withdraw would
block forever because it tries to acquire a lock it already
has

One (not very good) possibility

18

 Can‟t let outside world call

setBalance1

 Can‟t have withdraw call
setBalance2

 Could work (if adhered
to), but not good style;
also not very convenient

 Alternately, we can modify
the meaning of the Lock
ADT to support re-entrant
locks
 Java does this

int setBalance1(int x) {

balance = x;

}

int setBalance2(int x) {

lk.acquire();

balance = x;

lk.release();

}

void withdraw(int amount) {

lk.acquire();

…

setBalanceX(b – amount);

lk.release();

}

Re-entrant lock

19

A re-entrant lock (a.k.a. recursive lock)

 The idea: Once acquired, the lock is held by the Thread, and
subsequent calls to acquire in that Thread won‟t block

 “Remembers”
 the thread (if any) that currently holds it

 a count

 When the lock goes from not-held to held, the count is 0

 If code in the holding Thread calls acquire:

 it does not block

 it increments the count

 On release:
 if the count is > 0, the count is decremented

 if the count is 0, the lock becomes not-held

 Result: Withdraw can acquire the lock, and then call setBalance, which
can also acquire the lock
 Because they‟re in the same thread & it‟s a re-entrant lock, the inner acquire

won‟t block

Java’s Re-entrant Lock

20

 java.util.concurrent.ReentrantLock

 Has methods lock() and unlock()

 As described above, it is conceptually owned by the

Thread, and shared within that

 Important to guarantee that lock is always released;

recommend something like this:

lock.lock();

try { // method body }

finally { lock.unlock(); }

 Despite what happens in „try‟, the code in finally will execute

afterwards

Synchronized: A Java convenience

21

Java has built-in support for re-entrant locks
 You can use the synchronized statement as an

alternative to declaring a ReentrantLock

synchronized (expression) {

statements

}

1. Evaluates expression to an object, uses it as a lock

• Every object (but not primitive types) “is a lock” in Java

2. Acquires the lock, blocking if necessary

• “If you get past the {, you have the lock”

3. Releases the lock “at the matching }”

• Even if control leaves due to throw, return, etc.

• So impossible to forget to release the lock

Example of Java’s synchronized

22

class BankAccount {

private int balance = 0;

private Object lk = new Object();

int getBalance()

{ synchronized (lk) { return balance; } }

void setBalance(int x)

{ synchronized (lk) { balance = x; } }

void withdraw(int amount) {

synchronized (lk) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

}

// deposit would also use synchronized(lk)

}

Improving the Java

23

 As written, the lock is private

 Might seem like a good idea

 But also prevents code in other classes from writing

operations that synchronize with the account operations

 More common is to synchronize on this…

 Also, it‟s convenient; don‟t need to declare an extra object

Java version #2

24

class BankAccount {

private int balance = 0;

int getBalance()

{ synchronized (this){ return balance; } }

void setBalance(int x)

{ synchronized (this){ balance = x; } }

void withdraw(int amount) {

synchronized (this) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

}

// deposit would also use synchronized(this)

}

Syntactic sugar

25

synchronized (this) is sufficiently common

that there is an even simpler way to do it in Java:

Putting synchronized before a method declaration

means the entire method body is surrounded by

synchronized(this){…}

Therefore, version #3 (next slide) means exactly the

same thing as version #2 but is more concise

Java version #3 (final version)

26

class BankAccount {

private int balance = 0;

synchronized int getBalance()

{ return balance; }

synchronized void setBalance(int x)

{ balance = x; }

synchronized void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

// deposit would also use synchronized

}

