
CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Tyler Robison

Summer 2010

1

Proof via mathematical induction

2

Suppose P(n) is some rule involving n
 Example: n ≥ n/2 + 1, for all n ≥2

To prove P(n) for all integers n ≥ c, it suffices to prove

1. P(c) – called the “basis” or “base case”

2. If P(k) then P(k+1) – called the “induction step” or
“inductive case”

Why we will care:

To show an algorithm is correct or has a certain
running time no matter how big a data structure or
input value is

(Our “n” will be the data structure or input size.)

Example

3

P(n) = “the sum of the first n powers of 2 (starting at)

is the next power of 2 minus 1”

Theorem: P(n) holds for all n ≥ 1

1=2-1

1+2=4-1

1+2+4=8-1

So far so good…

02

Example

4

Theorem: P(n) holds for all n ≥ 1

Proof: By induction on n

 Base case, n=1:

 Inductive case:

 Inductive hypothesis: Assume the sum of the first k powers of

2 is 2k-1

 Show, given the hypothesis, that the sum of the first (k+1)

powers of 2 is 2k+1-1

From our inductive hypothesis we know:

Add the next power of 2 to both sides…

We have what we want on the left; massage the right a bit

1212 10

122...421 1 kk

kkkk 21222...421 1

121)2(222...421 11 kkkk

Note for homework

5

Proofs by induction will come up a fair amount on

the homework

When doing them, be sure to state each part

clearly:

 What you‟re trying to prove

 The base case

 The inductive case

 The inductive hypothesis

 In many inductive proofs, you‟ll prove the inductive

case by just starting with your inductive hypothesis,

and playing with it a bit, as shown above

Powers of 2

6

 A bit is 0 or 1

 A sequence of n bits can represent 2n distinct things

 For example, the numbers 0 through 2n-1

 210 is 1024 (“about a thousand”, kilo in CSE speak)

 220 is “about a million”, mega in CSE speak

 230 is “about a billion”, giga in CSE speak

Java: an int is 32 bits and signed, so “max int” is

“about 2 billion”

a long is 64 bits and signed, so “max long” is

263-1

Therefore…

7

We could give a unique id to…

 Every person in this room with 4 bits

 Every person in the U.S. with 29 bits

 Every person in the world with 33 bits

 Every person to have ever lived with 38 bits (estimate)

 Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated,

do you think you could guess it?

Logarithms and Exponents

8

 Since so much is binary in CS, log almost

always means log2

 Definition: log2 x = y if x = 2y

 So, log2 1,000,000 = “a little under 20”

Just as exponents

grow very quickly,

logarithms grow

very slowly
See Excel file

for plot data –

play with it!

Logarithms and Exponents

9

Logarithms and Exponents

10

Properties of logarithms

11

 log(A*B) = log A + log B

 So log(Nk)= k log N

 log(A/B) = log A – log B

 x=

 log(log x) is written log log x

 Grows as slowly as 22 grows fast

 Ex:

 (log x)(log x) is written log2x

 It is greater than log x for all x > 2

y

532log2loglog~4loglog 2

32

2222 billion

x2log2

Log base doesn’t matter (much)

12

“Any base B log is equivalent to base 2 log within a

constant factor”

 And we are about to stop worrying about constant

factors!

 In particular, log2 x = 3.22 log10 x

 In general, we can convert log bases via a constant

multiplier

 Say, to convert from base B to base A:

logB x = (logA x) / (logA B)

Algorithm Analysis

13

As the “size” of an algorithm‟s input grows

(length of array to sort, size of queue to search, etc.):
 How much longer does the algorithm take (time)

 How much more memory does the algorithm need
(space)

We are generally concerned about approximate
runtimes
 Whether T(n)=3n+2 or T(n)=n/4+8, we say it runs in linear

time

 Common categories:

 Constant: T(n)=1

 Linear: T(n)=n

 Logarithmic: T(n)=logn

 Exponential: T(n)=2n

Example

14

 First, what does this pseudocode return?

x := 0;

for i=1 to n do

for j=1 to i do

x := x + 3;

return x;

 For any n ≥ 0, it returns 3n(n+1)/2

 Proof: By induction on n

 P(n) = after outer for-loop executes n times, x holds
3n(n+1)/2

 Base: n=0, returns 0

 Inductive case:

 Inductive hypothesis: x holds 3k(k+1)/2 after k iterations.

 Next iteration adds 3(k+1), for total of \

3k(k+1)/2 + 3(k+1)=

(3k(k+1) + 6(k+1))/2 =

(k+1)(3k+6)/2 =

3(k+1)(k+2)/2

Example

15

 How long does this pseudocode run?
x := 0;
for i=1 to n do

for j=1 to i do
x := x + 3;

return x;

 Find running time in terms of n, for any n ≥ 0

 Assignments, additions, returns take “1 unit time”

 Constant time

 Loops take the sum of the time for their iterations

 So: 2 + 2*(number of times inner loop runs)

 And how many times is that…

Example

16

 How long does this pseudocode run?
x := 0;
for i=1 to n do

for j=1 to i do
x := x + 3;

return x;

 n=1 -> 1 time; n=2 -> 3 times; n=3 -> 6 times

 The total number of loop iterations is n*(n+1)/2

 You‟ll get to prove it in the homework

 This is proportional to n2 , and we say O(n2), “big-Oh of”

 For large enough n, the n and constant terms are irrelevant, as

are the first assignment and return

 See plot… n*(n+1)/2 vs. just n2/2

Lower-order terms don’t matter

17

n*(n+1)/2 vs. just n2/2

Big Oh (also written Big-O)

18

 Big Oh is used for comparing asymptotic behavior of
functions; which is „faster‟?

 We‟ll get into the definition later, but for now:
 „f(n) is O(g(n))‟ roughly means

 The function f(n) is at least as small as g(n) as they go toward
infinity

 Think of it as ≤

 BUT: Big Oh ignores constant factors

 n+10 is O(n); we drop out the „+10‟

 5n is O(n); we drop out the „x5‟

 The following is NOT true though: n2 is O(n)

 Note that „f(n) is O(g(n))‟ gives an upper bound for f(n)

 n is O(n2)

 5 is O(n)

Big Oh: Common Categories

19

From fastest to slowest

O(1) constant (same as O(k) for constant k)

O(log n) logarithmic

O(n) linear

O(n log n) “n log n”

O(n2) quadratic

O(n3) cubic

O(nk) polynomial (where is k is an constant)

O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really
fast”, it means “grows at rate proportional to kn for
some k>1”
 A savings account accrues interest exponentially (k=1.01?)

