

1

CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Tyler Robison

Summer 2010

Proof via mathematical induction

Suppose *P(n)* is some rule involving n

• Example: $n \ge n/2 + 1$, for all $n \ge 2$

To prove P(n) for all integers $n \ge c$, it suffices to prove

- 1. P(c) called the "basis" or "base case"
- 2. If P(k) then P(k+1) called the "induction step" or "inductive case"

Why we will care:

To show an algorithm is correct or has a certain running time *no matter how big a data structure or input value is*

(Our "*n*" will be the data structure or input size.)

P(n) = "the sum of the first n powers of 2 (starting⁰ at is the next power of 2 minus 1"

Theorem: P(n) holds for all $n \ge 1$

1=2-1 1+2=4-1 1+2+4=8-1 So far so good...

Theorem: P(n) holds for all $n \ge 1$

Proof: By induction on n

- Base case, $n=12^0 = 1 = 2^1 1$
- Inductive case:
 - Inductive hypothesis: Assume the sum of the first k powers of 2 is 2^k-1
 - Show, given the hypothesis, that the sum of the first (k+1) powers of 2 is 2^{k+1}-1

From our inductive hypothesis we know:

$$1 + 2 + 4 + \dots + 2^{k-1} = 2^k - 1$$

Add the next power of 2 to both sides...

 $1 + 2 + 4 + \dots + 2^{k-1} + 2^k = 2^k - 1 + 2^k$

We have what we want on the left; massage the right a bit

 $1+2+4+\ldots+2^{k-1}+2^{k}=2(2^{k})-1=2^{k+1}-1$

Note for homework

Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:

- What you're trying to prove
- The base case
- The inductive case
- The inductive hypothesis
 - In many inductive proofs, you'll prove the inductive case by just starting with your inductive hypothesis, and playing with it a bit, as shown above

5

Powers of 2

- A bit is 0 or 1
- A sequence of *n* bits can represent 2ⁿ distinct things
 For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion"

a long is 64 bits and signed, so "max long" is 2^{63} -1

Therefore...

We could give a unique id to...

- Every person in this room with 4 bits
- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Logarithms and Exponents

- Since so much is binary in CS, log almost always means log₂
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"

Just as exponents grow *very* quickly, logarithms grow *very* slowly See Excel file for plot data – play with it!

Logarithms and Exponents

9

Logarithms and Exponents

Properties of logarithms

- $\log(A*B) = \log A + \log B$
 - > So $log(N^k) = k log N$
- $\log(A/B) = \log A \log B$
- **x**= $\log_2 2^x$
- > log(log x) is written log log x
 - Grows as slowly as ²/₂ grows fast
 - Ex: $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- (log x) (log x) is written log^2x
 - > It is greater than $\log x$ for all x > 2

Log base doesn't matter (much)

"Any base *B* log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base B to base A:

 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

Algorithm Analysis

As the "size" of an algorithm's input grows (length of array to sort, size of queue to search, etc.):

- How much longer does the algorithm take (time)
- How much more memory does the algorithm need (space)

We are generally concerned about approximate runtimes

- Whether T(n)=3n+2 or T(n)=n/4+8, we say it runs in linear time
- Common categories:
 - Constant: T(n)=1
 - Linear: T(n)=n
 - Logarithmic: T(n)=logn
- ¹³ Exponential: $T(n)=2^n$

First, what does this pseudocode return?

x := 0; for i=1 to n do for j=1 to i do x := x + 3; return x;

- For any $n \ge 0$, it returns 3n(n+1)/2
- Proof: By induction on *n*
 - P(n) = after outer for-loop executes n times, x holds 3n(n+1)/2
 - Base: n=0, returns 0
 - Inductive case:
 - Inductive hypothesis: \mathbf{x} holds 3k(k+1)/2 after k iterations.
 - Next iteration adds 3(k+1), for total of \ 3k(k+1)/2 + 3(k+1)= (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

How long does this pseudocode run?

x := 0; for i=1 to n do for j=1 to i do x := x + 3; return x;

- Find running time in terms of n, for any $n \ge 0$
 - Assignments, additions, returns take "1 unit time"
 - Constant time
 - Loops take the sum of the time for their iterations
- So: 2 + 2*(number of times inner loop runs)

And how many times is that...

How long does this pseudocode run?

x := 0; for i=1 to n do for j=1 to i do x := x + 3; return x;

- n=1 -> 1 time; n=2 -> 3 times; n=3 -> 6 times
- The total number of loop iterations is n*(n+1)/2
 - You'll get to prove it in the homework
 - ▶ This is proportional to n², and we say O(n²), "big-Oh of"
 - For large enough n, the n and constant terms are irrelevant, as are the first assignment and return
 - See plot... n*(n+1)/2 vs. just n²/2

Lower-order terms don't matter

n*(n+1)/2 vs. just n²/2

Big Oh (also written Big-O)

- Big Oh is used for comparing asymptotic behavior of functions; which is 'faster'?
- We'll get into the definition later, but for now:
 - 'f(n) is O(g(n))' roughly means
 - The function f(n) is at least as small as g(n) as they go toward infinity
 - Think of it as ≤
 - BUT: Big Oh ignores constant factors
 - n+10 is O(n); we drop out the '+10'
 - 5n is O(n); we drop out the 'x5'
 - The following is NOT true though: n² is O(n)
 - Note that 'f(n) is O(g(n))' gives an upper bound for f(n)
 - n is O(n²)
 - ▶ 5 is O(n)

Big Oh: Common Categories

to slowest
constant (same as $O(k)$ for constant k)
logarithmic
linear
"n log <i>n</i> "
quadratic
cubic
polynomial (where is <i>k</i> is an constant)
exponential (where k is any constant > 1

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to *k*ⁿ for some *k*>1"

A savings account accrues interest exponentially (k=1.01?)