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Changing a major assumption
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So far in 142, 143, 311, and 332, we have assumed

One thing happened at a time

Called sequential programming – everything part of one 
sequence

Removing this assumption creates major challenges & 
opportunities
 Programming: Divide work among threads of execution and 

coordinate (synchronize) among them

 Algorithms: How can parallel activity provide speed-up 

(more throughput: work done per unit time)

 Data structures: May need to support concurrent access 
(multiple threads operating on data at the same time)

Writing correct and efficient multithreaded code is often much 
more difficult than for single-threaded (i.e., sequential) code



A simplified view of history
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From roughly 1980-2005, desktop computers got 

exponentially faster at running sequential 

programs

 About twice as fast every couple years

But nobody knows how to continue this

 Increasing clock rate generates too much heat

 Relative cost of memory access is too high

 But we can keep making “wires exponentially smaller” 

(Moore‟s “Law”), so put multiple processors on the 

same chip (“multicore”)



What to do with multiple processors?

4

 Next computer you buy will likely have 4 processors

 Wait a few years and it will be 8, 16, 32, …

 The chip companies have decided to do this (not a “law”)

 What can you do with them?

 Run multiple totally different programs at the same time

 Already do that? Yes, but with time-slicing

 Do multiple things at once in one program

 Our focus – more difficult

 Requires rethinking everything from asymptotic complexity to 

how to implement data-structure operations



Parallelism vs. Concurrency
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Note: These terms are not yet standard, but the difference in 
perspective is essential
 Many programmers confuse them

 Remember that Parallelism != Concurrency

Parallelism:  Use more resources for a faster answer

Concurrency:  Correctly and efficiently allow simultaneous 
access to something (memory, printer, etc.)

There is some connection:
 Many programmers use threads for both

 If parallel computations need access to shared resources, 
then something needs to manage the concurrency

CSE332: Next few lectures on parallelism, then a few on 
concurrency



Parallelism Example
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Parallelism: Increasing throughput by using additional computational 
resources (code running simultaneously on different processors)

Ex: We have a huge array of numbers to add up; split between 4 people

Example in pseudocode (not Java, yet) below: sum elements of an array
 No such „FORALL‟ construct, but we‟ll see something similar

 If you had 4 processors, might get roughly 4x speedup

int sum(int[] arr){
res = new int[4];
len = arr.length;
FORALL(i=0; i < 4; i++) { //parallel iterations
res[i] = help(arr,i*len/4,(i+1)*len/4);

}
return res[0]+res[1]+res[2]+res[3];

}
int help(int[] arr, int lo, int hi) {

result = 0;
for(j=lo; j < hi; j++)

result += arr[j];
return result;

}



Concurrency Example
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Concurrency: Allowing simultaneous or interleaved access to shared resources from 
multiple clients

Ex: Multiple threads accessing a hash-table, but not getting in each others‟ ways

Example in pseudo-code (not Java, yet): chaining hash-table

 Essential correctness issue is preventing bad inter-leavings

 Essential performance issue not preventing good concurrency

 One „solution‟ to preventing bad inter-leavings is to do it all sequentially

class Hashtable<K,V> {
…
Hashtable(Comparator<K> c, Hasher<K> h) { … };
void insert(K key, V value) {

int bucket = …;
prevent-other-inserts/lookups in table[bucket];
do the insertion
re-enable access to arr[bucket];

}
V lookup(K key) {

(like insert, but can allow concurrent 
lookups to same bucket)

}
}



An analogy
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CSE142 idea: Writing a program is like writing a recipe for 
a cook

 One step at a time

Parallelism:

 Have lots of potatoes to slice? 

 Hire helpers, hand out potatoes and knives

 But we can go too far: if we had 1 helper per potato, we‟d 
spend too much time coordinating

Concurrency:

 Lots of cooks making different things, but only 2 stove 
burners

 Want to allow simultaneous access to both burners, but not 
cause spills or incorrect burner settings



Shared memory with Threads
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The model we will assume is shared memory with explicit 
threads

Old story: A running program has
 One call stack (with each stack frame holding local variables) 

 One program counter (current statement executing)

 Static fields

 Objects (created by new) in the heap (nothing to do with heap 
data structure)

New story:
 A set of threads, each with its own call stack & program 

counter
 No access to another thread‟s local variables

 Threads can (implicitly) share static fields / objects
 To communicate, write somewhere another thread reads



Shared memory with Threads 
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…

Heap for all objects and static fields

Threads, each with own unshared call stack and current statement (pc 

for “program counter”)

– local variables are numbers/null or heap references

pc=0x…

…

pc=0x…

…

pc=0x…

…



Other models
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We will focus on shared memory, but you should know 
several other models exist

 Message-passing: Each thread has its own collection of 
objects.  Communication is via explicit messages; 
language has primitives for sending and receiving them.
 Cooks working in separate kitchens, with telephones

 Dataflow: Programmers write programs in terms of a DAG 
and a node executes after all of its predecessors in the 
graph
 Cooks wait to be handed results of previous steps

 Data parallelism: Have primitives for things like “apply 
function to every element of an array in parallel”

 …



Java Threads (at a high level)
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 Many languages/libraries (including Java) provide 

primitives for creating threads and synchronizing them

 Steps to creating another thread:

1. Define a subclass C of java.lang.Thread, overriding 

run()

2. Create an object of class C

3. Call that object‟s start() method

 The code that called start will continue to execute after start

 A new thread will be created, with code executing in the 
object‟s run()method

 What happens if, for step 3, we called run instead of 

start?



Parallelism idea: First approach
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 Example: Sum elements of an array (presumably large)

 Use 4 threads, which each sum 1/4 of the array

ans0         ans1        ans2        ans3

+

ans

 Steps:
 Create 4 thread objects, assigning their portion of the work

 Call start() on each thread object to actually run it

 Somehow „wait‟ for threads to finish

 Add together their 4 answers for the final result



Partial Code for first attempt (with Threads)
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int sum(int[] arr){
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for(int i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

 Assume SumThread‟s run() simply loops through the 
given indices and adds the elements

 Overall, should work, but not ideal



Join: Our ‘wait’ method for Threads
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 The Thread class defines various methods that provide 
the threading primitives you could not implement on 
your own
 For example: start, which calls run in a new thread

 The join method is another such method, essential for 
coordination in this kind of computation
 Caller blocks until/unless the receiver is done executing 

(meaning its run returns)

 If we didn‟t use join, we would have a „race condition‟ (more 
on these later) on ts[i].ans
 Essentially, if it‟s a problem if any variable can be read/written 

simultaneously

 This style of parallel programming is called “fork/join”
 If we write in this style, we avoid many concurrency issues



Problems with our current approach
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The above method would work, but we can do better for several 
reasons:

1. Want code to be reusable and efficient across platforms
 Be able to work for a variable number of processors (not just 

hardcoded to 4); „forward portable‟

2. Even with knowledge of # of processors on the machine, we 
should be able to use them more dynamically
 This program is unlikely to be the only one running; shouldn‟t 

assume it gets all the resources

 # of „free‟ processors is likely to change over the course of 
time; be able to adapt

3. Different threads may take significantly different amounts of 
time (unlikely for sum, but common in many cases)
 Example: Apply method f to every array element, but maybe f

is much slower for some data items than others; say, verifying 
primes

 If we create 4 threads and all the slow data is processed by 1 
of them, we won‟t get nearly a 4x speedup („load imbalance‟)



Improvements
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The perhaps counter-intuitive solution to all these problems is to 
cut up our problem into many pieces, far more than the number 
of processors
 Idea: When processor finishes one piece, it can start another

 This will require changing our algorithm somewhat

ans0         ans1          …         ansN

ans

1. Forward-portable: Lots of threads each doing a small piece

2. Processors available used well: Hand out threads as you go

• Processors pick up new piece when done with old

3. Load imbalance: No problem if slow thread scheduled early enough

• Variation probably small anyway if pieces of work are small



Naïve algorithm that doesn’t work
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 Suppose we create 1 thread to process every 100 elements

int sum(int[] arr){
…
int numThreads = arr.length / 100;
SumThread[] ts = new SumThread[numThreads];
…

}

• Then combining results will have arr.length / 100 

additions to do – still linear in size of array

• In the extreme, suppose we create a thread to process every 1 

element – then we‟re back to where we started even though we 

said more threads was better



A better idea… look familiar?
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 Start with full problem at root

 Halve and make new thread until size is at some cutoff

 Combine answers in pairs as we return

 This will start small, and „grow‟ threads to fit the problem

 This is straightforward to implement using divide-and-
conquer

+ + + + + + + +

+ + + +

+ +

+



Divide-and-conquer really works
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 The key is divide-and-conquer parallelizes the result-combining
 If you have enough processors, total time is depth of the tree: O(log n)

 Exponentially faster than sequential O(n)

 Compare to, say, dividing into 100 chunks then linearly summing them

 Next lecture: study reality of P < O(n) processors

 We‟ll write all our parallel algorithms in this style
 But using a special library designed for exactly this

 Takes care of scheduling the computation well

 Java Threads have high overhead; not ideal for this

 Often relies on operations being associative like +

+ + + + + + + +

+ + + +

+ +

+



Code would look something like this (still 

using Java Threads)
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The key is to do the result-combining in parallel as well

 And using recursive divide-and-conquer makes this natural

 Easier to write and more efficient asymptotically!

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int l, int h) { … }
public void run(){
if(hi – lo < SEQUENTIAL_CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
int sum(int[] arr){ 

SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

}



Being realistic
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 In theory, you can divide down to single elements, do 
all your result-combining in parallel and get optimal 
speedup
 Total time O(n/numProcessors + log n)

 In practice, creating all that inter-thread 
communication swamps the savings, so:
 Use a sequential cutoff, typically around 500-1000

 As in quicksort, eliminates almost all recursion, but here it is 
even more important

 Don‟t create two recursive threads; create one and do 
the other “yourself”

 Cuts the number of threads created by another 2x



Half the threads created
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 If a language had built-in support for fork-join parallelism, I 
would expect this hand-optimization to be unnecessary

 But the library we are using expects you to do it yourself

 And the difference is surprisingly substantial

 No difference in theory

// wasteful: don’t
SumThread left = …
SumThread right = …
left.start();
right.start();
left.join(); 
right.join();
ans=left.ans+right.ans;

// better: do
SumThread left = …
SumThread right = …
// order of next 4 lines
// essential – why?
left.start();
right.run();
left.join(); 
ans=left.ans+right.ans;



That library, finally
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 Even with all this care, Java‟s threads are too 
“heavy-weight”
 Constant factors, especially space overhead

 Creating 20,000 Java threads just a bad idea 

 The ForkJoin Framework is designed to meet the 
needs of divide-and-conquer fork-join parallelism
 Will be in Java 7 standard libraries, but available in Java 

6 as a downloaded .jar file

 Section will focus on pragmatics/logistics

 Similar libraries available for other languages 

 C/C++: Cilk (inventors), Intel‟s Thread Building Blocks

 C#: Task Parallel Library



Different terms, same basic idea
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Thread vs.        ForkJoin Framework:

Don‟t subclass Thread Do subclass RecursiveTask<V>

Don‟t override run Do override compute

Do not use an ans field Do return a V from compute

Don‟t call start Do call fork

Don‟t just call join Do call join which returns answer

Don‟t call run to hand-optimize Do call compute to hand-optimize

Also, ForkJoin kicks the whole thing off with an „invoke()‟ (example on 
the next slide)



Example: final version (minus imports)
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class SumArray extends RecursiveTask<Integer> {
int lo; int hi; int[] arr;//fields to know what to do
SumArray(int[] a, int l, int h) { … }
protected Integer compute(){// return answer
if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0;
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {
SumArray left = new SumArray(arr,lo,(hi+lo)/2);
SumArray right= new SumArray(arr,(hi+lo)/2,hi);
left.fork();
int rightAns = right.compute();
int leftAns = left.join(); 
return leftAns + rightAns;

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
return fjPool.invoke(new SumArray(arr,0,arr.length));

}



Getting good results in practice
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 Sequential threshold
 Library documentation recommends doing approximately  100-

5000 basic operations in each “piece” of your algorithm

 Library needs to “warm up”
 May see slow results before the Java virtual machine re-

optimizes the library internals 

 When evaluating speed, put your computations in a loop to see 
the “long-term benefit”

 Wait until your computer has more processors 
 Seriously, overhead may dominate at 4 processors, but parallel 

programming is likely to become much more important

 Beware memory-hierarchy issues 
 Won‟t focus on this, but often crucial for parallel performance


