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Changing a major assumption
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So far in 142, 143, 311, and 332, we have assumed

One thing happened at a time

Called sequential programming – everything part of one 
sequence

Removing this assumption creates major challenges & 
opportunities
 Programming: Divide work among threads of execution and 

coordinate (synchronize) among them

 Algorithms: How can parallel activity provide speed-up 

(more throughput: work done per unit time)

 Data structures: May need to support concurrent access 
(multiple threads operating on data at the same time)

Writing correct and efficient multithreaded code is often much 
more difficult than for single-threaded (i.e., sequential) code



A simplified view of history
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From roughly 1980-2005, desktop computers got 

exponentially faster at running sequential 

programs

 About twice as fast every couple years

But nobody knows how to continue this

 Increasing clock rate generates too much heat

 Relative cost of memory access is too high

 But we can keep making “wires exponentially smaller” 

(Moore‟s “Law”), so put multiple processors on the 

same chip (“multicore”)



What to do with multiple processors?
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 Next computer you buy will likely have 4 processors

 Wait a few years and it will be 8, 16, 32, …

 The chip companies have decided to do this (not a “law”)

 What can you do with them?

 Run multiple totally different programs at the same time

 Already do that? Yes, but with time-slicing

 Do multiple things at once in one program

 Our focus – more difficult

 Requires rethinking everything from asymptotic complexity to 

how to implement data-structure operations



Parallelism vs. Concurrency
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Note: These terms are not yet standard, but the difference in 
perspective is essential
 Many programmers confuse them

 Remember that Parallelism != Concurrency

Parallelism:  Use more resources for a faster answer

Concurrency:  Correctly and efficiently allow simultaneous 
access to something (memory, printer, etc.)

There is some connection:
 Many programmers use threads for both

 If parallel computations need access to shared resources, 
then something needs to manage the concurrency

CSE332: Next few lectures on parallelism, then a few on 
concurrency



Parallelism Example
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Parallelism: Increasing throughput by using additional computational 
resources (code running simultaneously on different processors)

Ex: We have a huge array of numbers to add up; split between 4 people

Example in pseudocode (not Java, yet) below: sum elements of an array
 No such „FORALL‟ construct, but we‟ll see something similar

 If you had 4 processors, might get roughly 4x speedup

int sum(int[] arr){
res = new int[4];
len = arr.length;
FORALL(i=0; i < 4; i++) { //parallel iterations
res[i] = help(arr,i*len/4,(i+1)*len/4);

}
return res[0]+res[1]+res[2]+res[3];

}
int help(int[] arr, int lo, int hi) {

result = 0;
for(j=lo; j < hi; j++)

result += arr[j];
return result;

}



Concurrency Example
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Concurrency: Allowing simultaneous or interleaved access to shared resources from 
multiple clients

Ex: Multiple threads accessing a hash-table, but not getting in each others‟ ways

Example in pseudo-code (not Java, yet): chaining hash-table

 Essential correctness issue is preventing bad inter-leavings

 Essential performance issue not preventing good concurrency

 One „solution‟ to preventing bad inter-leavings is to do it all sequentially

class Hashtable<K,V> {
…
Hashtable(Comparator<K> c, Hasher<K> h) { … };
void insert(K key, V value) {

int bucket = …;
prevent-other-inserts/lookups in table[bucket];
do the insertion
re-enable access to arr[bucket];

}
V lookup(K key) {

(like insert, but can allow concurrent 
lookups to same bucket)

}
}



An analogy
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CSE142 idea: Writing a program is like writing a recipe for 
a cook

 One step at a time

Parallelism:

 Have lots of potatoes to slice? 

 Hire helpers, hand out potatoes and knives

 But we can go too far: if we had 1 helper per potato, we‟d 
spend too much time coordinating

Concurrency:

 Lots of cooks making different things, but only 2 stove 
burners

 Want to allow simultaneous access to both burners, but not 
cause spills or incorrect burner settings



Shared memory with Threads
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The model we will assume is shared memory with explicit 
threads

Old story: A running program has
 One call stack (with each stack frame holding local variables) 

 One program counter (current statement executing)

 Static fields

 Objects (created by new) in the heap (nothing to do with heap 
data structure)

New story:
 A set of threads, each with its own call stack & program 

counter
 No access to another thread‟s local variables

 Threads can (implicitly) share static fields / objects
 To communicate, write somewhere another thread reads



Shared memory with Threads 
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…

Heap for all objects and static fields

Threads, each with own unshared call stack and current statement (pc 

for “program counter”)

– local variables are numbers/null or heap references

pc=0x…

…

pc=0x…

…

pc=0x…

…



Other models
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We will focus on shared memory, but you should know 
several other models exist

 Message-passing: Each thread has its own collection of 
objects.  Communication is via explicit messages; 
language has primitives for sending and receiving them.
 Cooks working in separate kitchens, with telephones

 Dataflow: Programmers write programs in terms of a DAG 
and a node executes after all of its predecessors in the 
graph
 Cooks wait to be handed results of previous steps

 Data parallelism: Have primitives for things like “apply 
function to every element of an array in parallel”

 …



Java Threads (at a high level)
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 Many languages/libraries (including Java) provide 

primitives for creating threads and synchronizing them

 Steps to creating another thread:

1. Define a subclass C of java.lang.Thread, overriding 

run()

2. Create an object of class C

3. Call that object‟s start() method

 The code that called start will continue to execute after start

 A new thread will be created, with code executing in the 
object‟s run()method

 What happens if, for step 3, we called run instead of 

start?



Parallelism idea: First approach
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 Example: Sum elements of an array (presumably large)

 Use 4 threads, which each sum 1/4 of the array

ans0         ans1        ans2        ans3

+

ans

 Steps:
 Create 4 thread objects, assigning their portion of the work

 Call start() on each thread object to actually run it

 Somehow „wait‟ for threads to finish

 Add together their 4 answers for the final result



Partial Code for first attempt (with Threads)
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int sum(int[] arr){
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for(int i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

 Assume SumThread‟s run() simply loops through the 
given indices and adds the elements

 Overall, should work, but not ideal



Join: Our ‘wait’ method for Threads
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 The Thread class defines various methods that provide 
the threading primitives you could not implement on 
your own
 For example: start, which calls run in a new thread

 The join method is another such method, essential for 
coordination in this kind of computation
 Caller blocks until/unless the receiver is done executing 

(meaning its run returns)

 If we didn‟t use join, we would have a „race condition‟ (more 
on these later) on ts[i].ans
 Essentially, if it‟s a problem if any variable can be read/written 

simultaneously

 This style of parallel programming is called “fork/join”
 If we write in this style, we avoid many concurrency issues



Problems with our current approach
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The above method would work, but we can do better for several 
reasons:

1. Want code to be reusable and efficient across platforms
 Be able to work for a variable number of processors (not just 

hardcoded to 4); „forward portable‟

2. Even with knowledge of # of processors on the machine, we 
should be able to use them more dynamically
 This program is unlikely to be the only one running; shouldn‟t 

assume it gets all the resources

 # of „free‟ processors is likely to change over the course of 
time; be able to adapt

3. Different threads may take significantly different amounts of 
time (unlikely for sum, but common in many cases)
 Example: Apply method f to every array element, but maybe f

is much slower for some data items than others; say, verifying 
primes

 If we create 4 threads and all the slow data is processed by 1 
of them, we won‟t get nearly a 4x speedup („load imbalance‟)



Improvements
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The perhaps counter-intuitive solution to all these problems is to 
cut up our problem into many pieces, far more than the number 
of processors
 Idea: When processor finishes one piece, it can start another

 This will require changing our algorithm somewhat

ans0         ans1          …         ansN

ans

1. Forward-portable: Lots of threads each doing a small piece

2. Processors available used well: Hand out threads as you go

• Processors pick up new piece when done with old

3. Load imbalance: No problem if slow thread scheduled early enough

• Variation probably small anyway if pieces of work are small



Naïve algorithm that doesn’t work

18

 Suppose we create 1 thread to process every 100 elements

int sum(int[] arr){
…
int numThreads = arr.length / 100;
SumThread[] ts = new SumThread[numThreads];
…

}

• Then combining results will have arr.length / 100 

additions to do – still linear in size of array

• In the extreme, suppose we create a thread to process every 1 

element – then we‟re back to where we started even though we 

said more threads was better



A better idea… look familiar?
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 Start with full problem at root

 Halve and make new thread until size is at some cutoff

 Combine answers in pairs as we return

 This will start small, and „grow‟ threads to fit the problem

 This is straightforward to implement using divide-and-
conquer

+ + + + + + + +

+ + + +

+ +

+



Divide-and-conquer really works
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 The key is divide-and-conquer parallelizes the result-combining
 If you have enough processors, total time is depth of the tree: O(log n)

 Exponentially faster than sequential O(n)

 Compare to, say, dividing into 100 chunks then linearly summing them

 Next lecture: study reality of P < O(n) processors

 We‟ll write all our parallel algorithms in this style
 But using a special library designed for exactly this

 Takes care of scheduling the computation well

 Java Threads have high overhead; not ideal for this

 Often relies on operations being associative like +

+ + + + + + + +

+ + + +

+ +

+



Code would look something like this (still 

using Java Threads)
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The key is to do the result-combining in parallel as well

 And using recursive divide-and-conquer makes this natural

 Easier to write and more efficient asymptotically!

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr;//fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int l, int h) { … }
public void run(){
if(hi – lo < SEQUENTIAL_CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
int sum(int[] arr){ 

SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

}



Being realistic
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 In theory, you can divide down to single elements, do 
all your result-combining in parallel and get optimal 
speedup
 Total time O(n/numProcessors + log n)

 In practice, creating all that inter-thread 
communication swamps the savings, so:
 Use a sequential cutoff, typically around 500-1000

 As in quicksort, eliminates almost all recursion, but here it is 
even more important

 Don‟t create two recursive threads; create one and do 
the other “yourself”

 Cuts the number of threads created by another 2x



Half the threads created
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 If a language had built-in support for fork-join parallelism, I 
would expect this hand-optimization to be unnecessary

 But the library we are using expects you to do it yourself

 And the difference is surprisingly substantial

 No difference in theory

// wasteful: don’t
SumThread left = …
SumThread right = …
left.start();
right.start();
left.join(); 
right.join();
ans=left.ans+right.ans;

// better: do
SumThread left = …
SumThread right = …
// order of next 4 lines
// essential – why?
left.start();
right.run();
left.join(); 
ans=left.ans+right.ans;



That library, finally
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 Even with all this care, Java‟s threads are too 
“heavy-weight”
 Constant factors, especially space overhead

 Creating 20,000 Java threads just a bad idea 

 The ForkJoin Framework is designed to meet the 
needs of divide-and-conquer fork-join parallelism
 Will be in Java 7 standard libraries, but available in Java 

6 as a downloaded .jar file

 Section will focus on pragmatics/logistics

 Similar libraries available for other languages 

 C/C++: Cilk (inventors), Intel‟s Thread Building Blocks

 C#: Task Parallel Library



Different terms, same basic idea
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Thread vs.        ForkJoin Framework:

Don‟t subclass Thread Do subclass RecursiveTask<V>

Don‟t override run Do override compute

Do not use an ans field Do return a V from compute

Don‟t call start Do call fork

Don‟t just call join Do call join which returns answer

Don‟t call run to hand-optimize Do call compute to hand-optimize

Also, ForkJoin kicks the whole thing off with an „invoke()‟ (example on 
the next slide)



Example: final version (minus imports)
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class SumArray extends RecursiveTask<Integer> {
int lo; int hi; int[] arr;//fields to know what to do
SumArray(int[] a, int l, int h) { … }
protected Integer compute(){// return answer
if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0;
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {
SumArray left = new SumArray(arr,lo,(hi+lo)/2);
SumArray right= new SumArray(arr,(hi+lo)/2,hi);
left.fork();
int rightAns = right.compute();
int leftAns = left.join(); 
return leftAns + rightAns;

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
return fjPool.invoke(new SumArray(arr,0,arr.length));

}



Getting good results in practice
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 Sequential threshold
 Library documentation recommends doing approximately  100-

5000 basic operations in each “piece” of your algorithm

 Library needs to “warm up”
 May see slow results before the Java virtual machine re-

optimizes the library internals 

 When evaluating speed, put your computations in a loop to see 
the “long-term benefit”

 Wait until your computer has more processors 
 Seriously, overhead may dominate at 4 processors, but parallel 

programming is likely to become much more important

 Beware memory-hierarchy issues 
 Won‟t focus on this, but often crucial for parallel performance


