
CSE332: Data Abstractions

Lecture 17: Shortest Paths

Tyler Robison

Summer 2010

1

Single source shortest paths (from some

specific point a)

2

 Done: BFS to find the minimum path length from v to u in O(|E|)

 Actually, can find the minimum path length from v to every node
 Still O(|E|)

 No faster way for a “distinguished” destination in the worst-case

 Now: Weighted graphs

Given a weighted graph and node v,

find the minimum-cost path from v to every node

 As before, asymptotically no harder than for one destination

 Unlike before, BFS will not work

 Aside: We can find the shortest path from every vertex to every other
vertex in O(|V|3)

Not as easy

3

Why BFS won‟t work: Shortest path may not have the fewest edges

500

100
100 100

100

We will assume there are no negative weights

• Problem is ill-defined if there are negative-cost cycles

• What is the shortest path here?

• Even without negative cycles, can still get wrong answer if

negative weights are involved

7

10 5

-11

Dijkstra’s Algorithm (for shortest paths)

4

 Named after its creator Edsger Dijkstra (1930-

2002)

 Truly one of the “founders” of computer science; this is

just one of his many contributions

 Quotation: “computer science is no more about

computers than astronomy is about telescopes”

 The idea: reminiscent of BFS, but adapted to

handle weights

 A priority queue will prove useful for efficiency (later)

 Will grow the set of nodes whose shortest distance

has been computed

 Nodes not in the set will have a “best distance so far”

Dijkstra’s Algorithm: Idea

5

 Conceptually:

 Grow our „cloud‟ of known vertices by 1 each step

 Pick a vertex outside the cloud, that‟s closest to our

starting point

 Guaranteed that we have the shortest path to

everything within the cloud (more later)

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

110 2
3

111

7

1

9

2

4 5

Dijkstra’s Algorithm: Idea

6

 Initially, start node has cost 0 and all other nodes have cost

 Mark each vertex as „unknown‟ (also referred to as
„unvisited‟, „unexplored‟)

 At each step:
 Pick closest unknown vertex v (will be start node for first step)

 Add it to the “cloud” of known vertices

 Update distances for nodes with edges from v

 That‟s it! (Have to prove it produces correct answers)

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

110 2
3

111

7

1

9

2

4 5

The Algorithm

7

1. For each node v, set v.cost= and v.known=false

2. Set source.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v,u) with weight w,

c1 = v.cost + w // cost of best path through v to u

c2 = u.cost // cost of best path to u previously known

if(c1 < c2){ // if the path through v is better

u.cost = c1

u.path = v // for computing actual paths

}

Example #1

8

A B

D
C

F H

E

G

0

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

H ??

5

Example #1

9

A B

D
C

F H

E

G

0 2

4

1

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B 2 A

C 1 A

D 4 A

E ??

F ??

G ??

H ??

5

Example #1

10

A B

D
C

F H

E

G

0 2

4

1

12

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B 2 A

C Y 1 A

D 4 A

E 12 C

F ??

G ??

H ??

5

Example #1

11

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D 4 A

E 12 C

F 4 B

G ??

H ??

5

Example #1

12

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E 12 C

F 4 B

G ??

H ??

5

Example #1

13

A B

D
C

F H

E

G

0 2 4 7

4

1

12

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E 12 C

F Y 4 B

G ??

H 7 F

5

Example #1

14

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E 12 C

F Y 4 B

G 8 H

H Y 7 F

5

Example #1

15

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E 11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Example #1

16

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1

9

2

4 5

Important features

17

 Once a vertex is marked „known‟, the cost of the

shortest path to that node is known

 As is the path itself

 While a vertex is still not known, another shorter path

to it might still be found

Interpreting the results

18

 Now that we‟re done, how do we get the path from,

say, A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1

9

2

4 5
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Stopping Short

19

 How would this have worked differently if we were

only interested in the path from A to G?

 A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1

9

2

4 5
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Example #2

20

A B

C
D

F

E

G

0

2

1
2

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

5

1

1

1

2
6

5 3

10

Example #2

21

A B

C
D

F

E

G

0

2

1

2

1
2

vertex known? cost path

A Y 0

B ??

C 2 A

D 1 A

E ??

F ??

G ??

5

1

1

1

2
6

5 3

10

Example #2

22

A B

C
D

F

E

G

0 6

7

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B 6 D

C 2 A

D Y 1 A

E 2 D

F 7 D

G 6 D

5

1

1

1

2
6

5 3

10

Example #2

23

A B

C
D

F

E

G

0 6

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B 6 D

C Y 2 A

D Y 1 A

E 2 D

F 4 C

G 6 D

5

1

1

1

2
6

5 3

10

Example #2

24

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F 4 C

G 6 D

5

1

1

1

2
6

5 3

10

Example #2

25

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F 4 C

G 6 D

5

1

1

1

2
6

5 3

10

Example #2

26

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G 6 D

5

1

1

1

2
6

5 3

10

Example #2

27

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

5

1

1

1

2
6

5 3

10

True or false:

28

 If we were to count out all the edges „found‟ by

Dijkstra‟s, we would have |V|-1 edges

Example #3

29

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far from X to Y proceed?

Example #3

30

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far from X to Y proceed?

90, 81, 72, 63, 54

Where are we?

31

 Have described Dijkstra‟s algorithm

 For single-source shortest paths in a weighted graph
(directed or undirected) with no negative-weight edges

 An example of a greedy algorithm: at each step, irrevocably
does the best thing it can at that step

 Because of the way the algorithm is structured, the „apparent
best‟ actually is the best

 What should we do after learning an algorithm?

 Prove it is correct

 Not obvious!

 We will sketch the key ideas

 Analyze its efficiency

Correctness: Intuition

32

Rough intuition:

All the “known” vertices have the correct shortest path

 True initially: shortest path to start node has cost 0

 If it stays true every time we mark a node “known”, then by

induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we

won‟t discover a shorter path later!

 This holds only because Dijkstra‟s algorithm picks the node

with the next shortest path-so-far

 The proof is by contradiction…

Correctness: The Cloud (Rough Idea)

33

w

Better path

to v? The Known
Cloud

v Next shortest path from

inside the known cloud

Source

Suppose v is the next node to be marked known (“added to the cloud”)

• The best-known path to v must have only nodes “in the cloud”

– Since we‟ve selected it, and we only know about paths through the cloud to a

node right outside

• Assume the actual shortest path to v is different than the best-known

– It won‟t use only cloud nodes, or we would know about it; so it must use non-

cloud nodes

– Let w be the first non-cloud node on this „actual shortest path‟

– The part of the path up to w is already known and must be shorter than the

best-known path to v. So v would not have been picked. Contradiction.

Efficiency, first approach

34

Use pseudocode to determine asymptotic run-time
 Notice each edge is processed only once

dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

while(not all nodes are known) {

b = find unknown node with smallest cost

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))

a.path = b

}

}

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)

Improving asymptotic running time

35

 So far: O(|V|2)

 We had a similar “problem” with topological sort being
O(|V|2) due to each iteration looking for the node to
process next

 We solved it with a queue of zero-degree nodes

 But here we need the lowest-cost node and costs can
change as we process edges

 Solution?

 A priority queue holding all unknown nodes, sorted by cost

 But must support decreaseKey operation

 Must maintain a reference from each node to its position in the
priority queue

Efficiency, second approach

36

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {

for each node: x.cost=infinity, x.known=false

start.cost = 0

build-heap with all nodes

while(heap is not empty) {

b = deleteMin()

b.known = true

for each edge (b,a) in G

if(!a.known)

if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)

a.path = b

}

}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|V|log|V|+|E|log|V|)

Dense vs. sparse again

37

 First approach: O(|V|2)

 Second approach: O(|V|log|V|+|E|log|V|)

 So which is better?

 Sparse: O(|V|log|V|+|E|log|V|)

 (if |E| > |V|, then O(|E|log|V|))

 Dense: O(|V|2)

 But, remember these are worst-case and asymptotic

 Priority queue might have slightly worse constant factors

 On the other hand, for “normal graphs”, we might call
decreaseKey rarely (or not percolate far), making |E|log|V|
more like |E|

