

CSE332: Data Abstractions

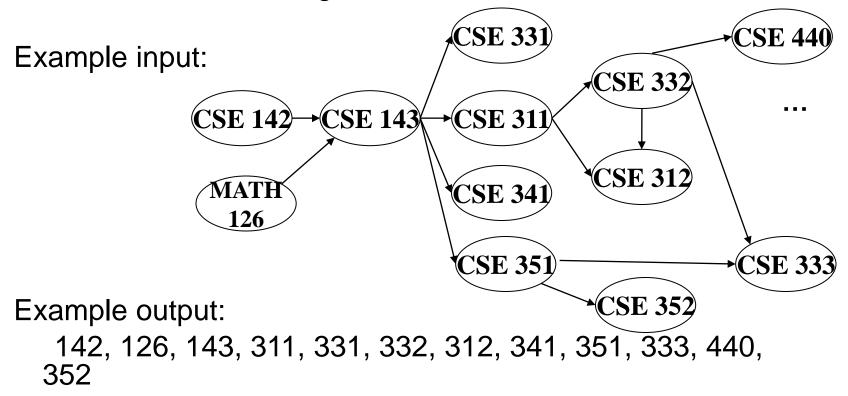
Lecture 16: Topological Sort / Graph Traversals

Tyler Robison

Summer 2010

Topological Sort

Problem: Given a DAG G= (V, E), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it



Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer
- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
- What DAGs have exactly 1 answer?
 - Lists
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

Figuring out how to finish your degree

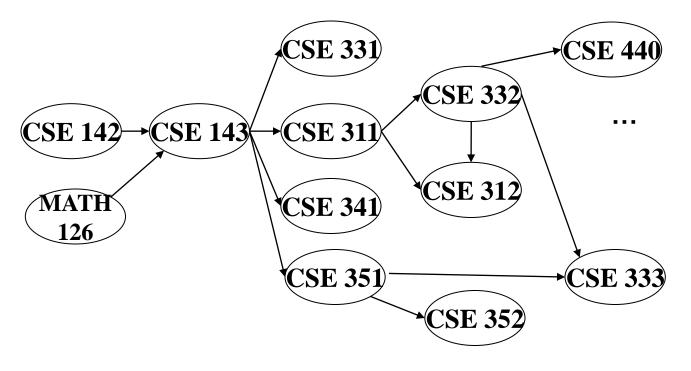
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution

A first algorithm for topological sort

- 1. Label each vertex with its in-degree
 - Labeling also called marking
 - Think "write in a field in the vertex", though you could also do this with a data structure (e.g., array) on the side
- 2. While there are vertices not yet output:
 - a) Choose a vertex **v** with labeled with in-degree of 0
 - b) Output **v** and remove it (conceptually) from the graph
 - For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u

Example

Output:



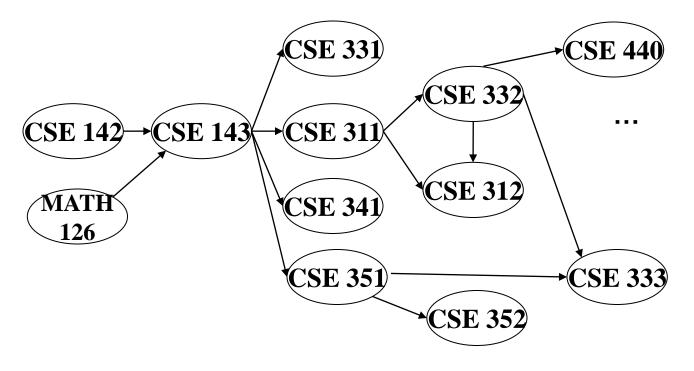
 Node:
 126 142 143 311 312 331 332 333 341 351 352 440

 Removed?

 In-degree:
 0
 0
 2
 1
 2
 1
 1
 1

Example

Output: 126

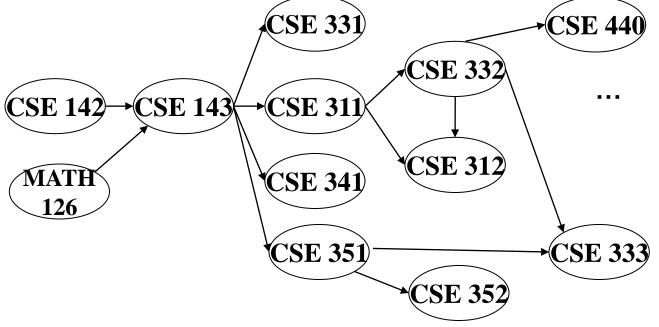


 Node:
 126 142 143 311 312 331 332 333 341 351 352 440

 Removed?
 x

 In-degree:
 0
 0
 2
 1
 2
 1
 1
 1

 1
 1
 1
 2
 1
 1
 1
 1
 1

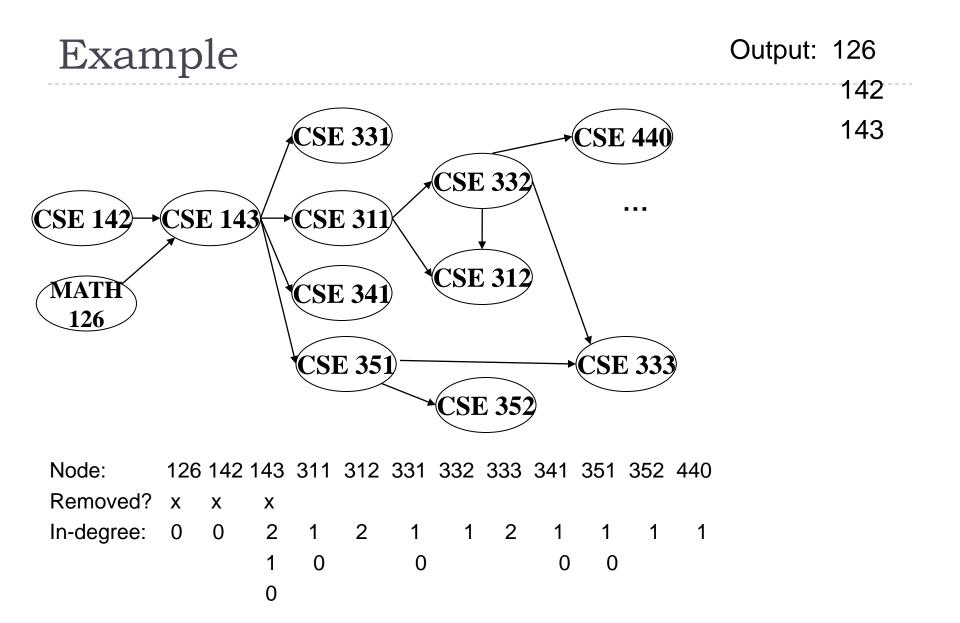


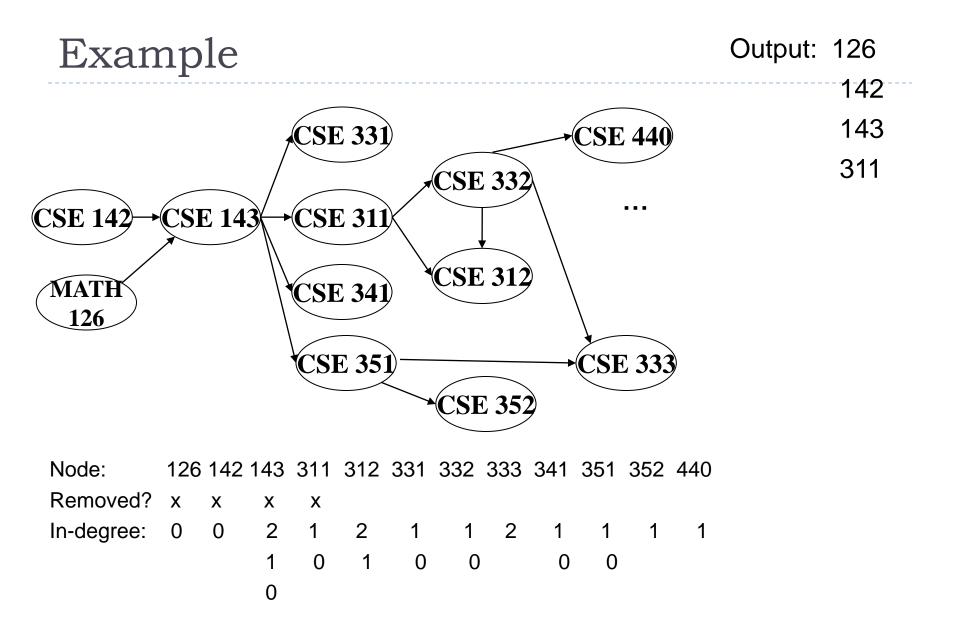
 Node:
 126 142 143 311 312 331 332 333 341 351 352 440

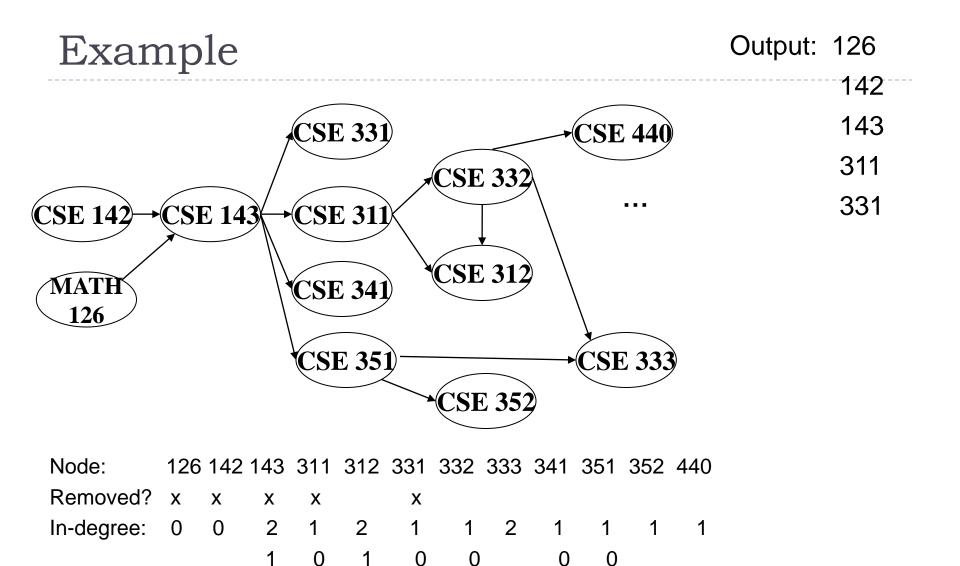
 Removed?
 x
 x

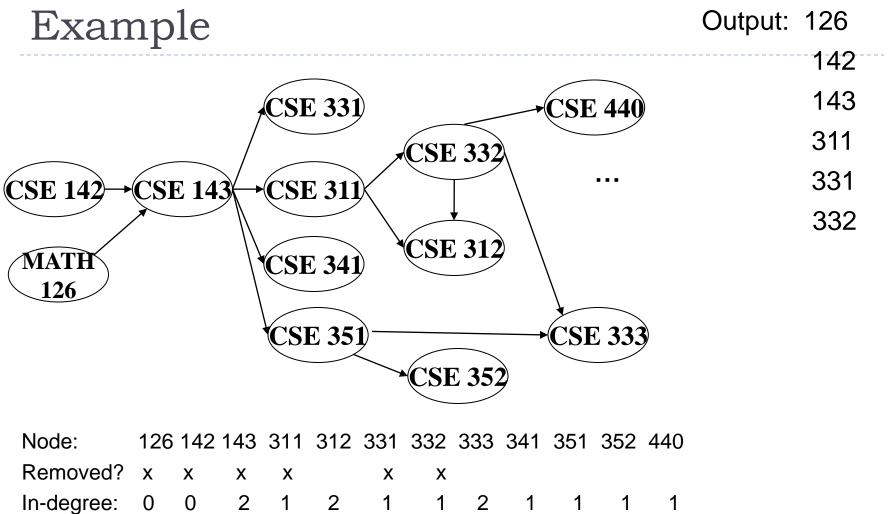
 In-degree:
 0
 0
 2
 1
 2
 1
 1
 1

 0
 0
 1
 2
 1
 1
 1
 1

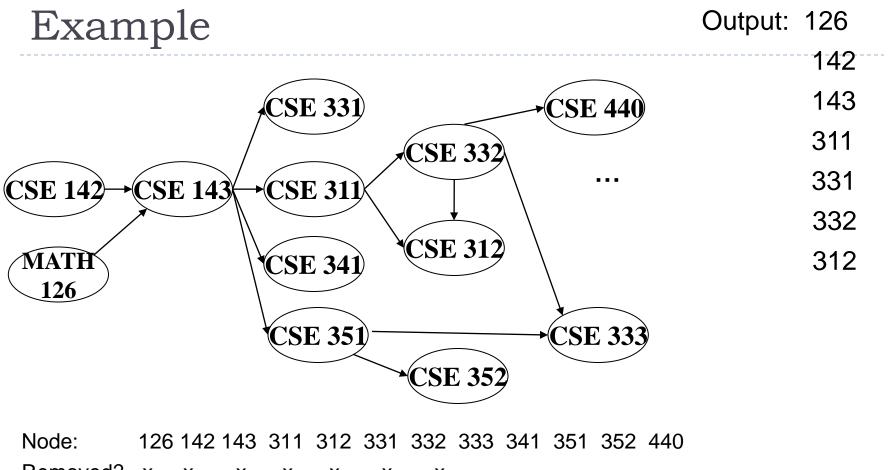




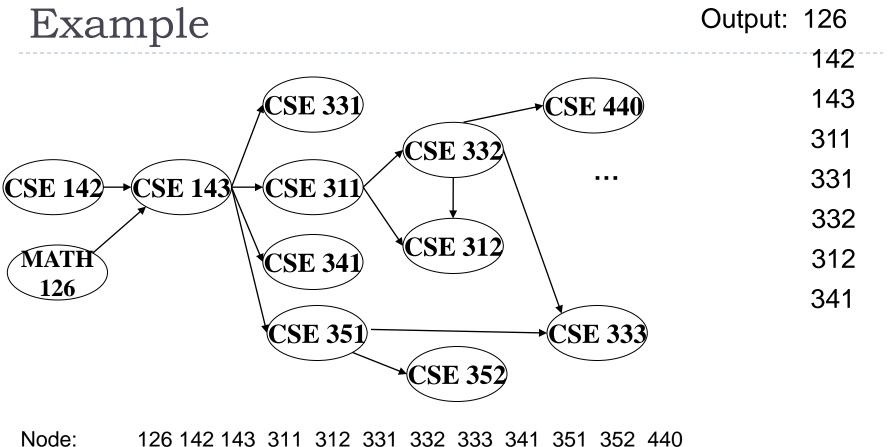




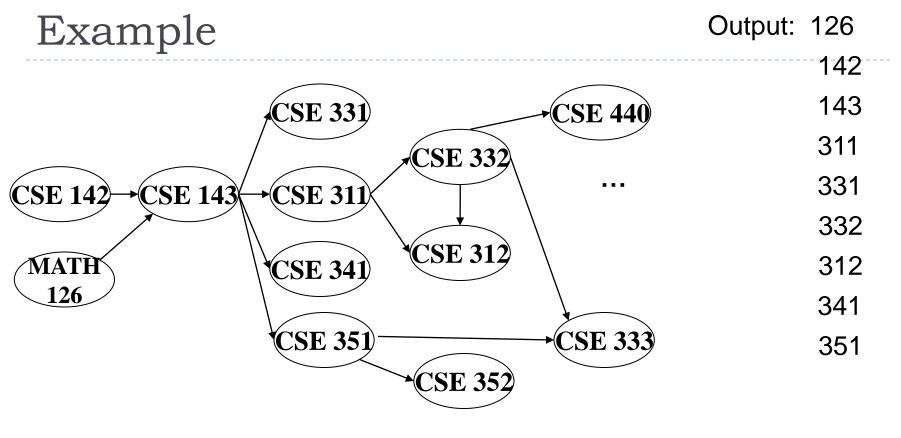
-degree: 0 0 2 1 2 1 1 2 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0



Removed?	Х	Х	Х	Х	Х	Х	Х					
In-degree:	0	0	2	1	2	1	1	2	1	1	1	1
			1	0	1	0	0	1	0	0		0
			0		0							

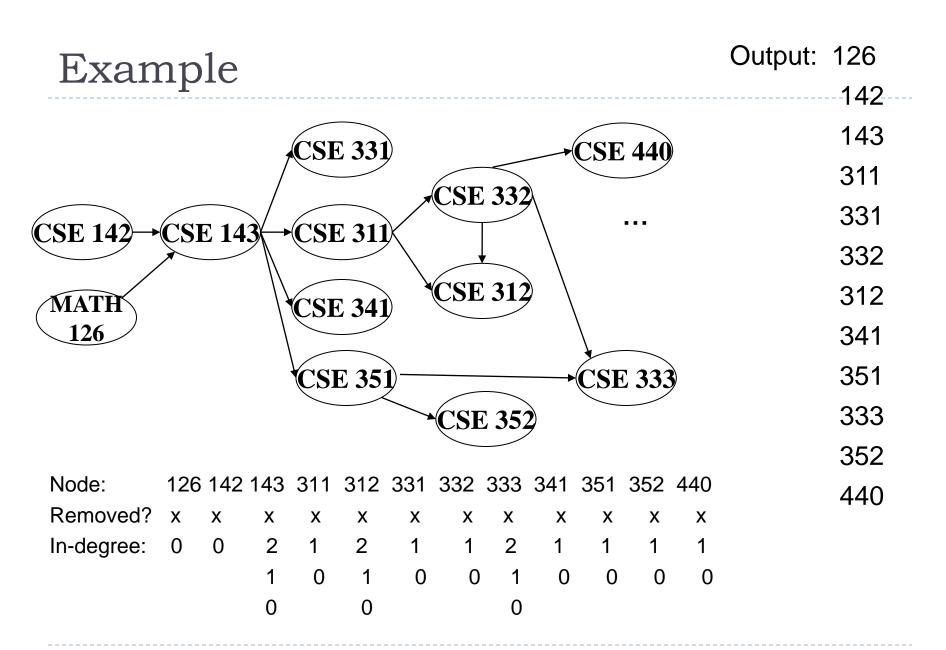


Removed? Х Х Х Х Х Х Х Х In-degree:



Node: 126 142 143 311 312 331 332 333 341 351 352 440 Removed? Х Х Х Х Х Х Х Х Х In-degree:

D



A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
  v = findNewVertexOfDegreeZero();
  put v next in output
  for each w adjacent to v
   w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization O(|V|)
 - ▶ Sum of all find-new-vertex O(|V|²) (because each O(|V|))
 - Sum of all decrements O(|E|) (assuming adjacency list)
 - So total is O(|V|²) − not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

- 1. Label each vertex with its in-degree, enqueue 0-degree nodes
- 2. While queue is not empty
 - a) **v** = dequeue()
 - b) Output **v** and remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**, if new degree is 0, enqueue it

Running time now?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if(w.indegree==0) enqueue(v);
    }
}
```

What is the worst-case running time?

- Initialization: O(|V|)
- Sum of all enqueues and dequeues: O(|V|)
- Sum of all decrements: O(|E|) (assuming adjacency list)
- So total is O(|E| + |V|) much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node **v**, find all nodes *reachable* (i.e., there exists a path) from **v**

- Possibly "do something" for each node
 - Print to output, set some field, etc.

Related:

- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node for all nodes

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract idea

```
traverseGraph(Node start) {
   Set pending = emptySet();
   pending.add(start)
  mark start as visited
   while(pending is not empty) {
     next = pending.remove()
     for each node u adjacent to next
        if(u is not marked) {
          mark u
          pending.add(u)
        }
```

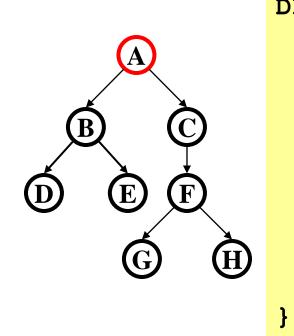
Running time and options

Assuming add and remove are O(1), entire traversal is O(|E|)

- The order we traverse depends entirely on add and remove
 - Popular choice: a stack "depth-first graph search" "DFS"
 - Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first
- Aside: These are important concepts in AI
 - Conceive of tree of all possible chess states
 - Traverse to find 'optimal' strategy

Example: trees

In a tree DFS and BFS are particularly easy to "see"

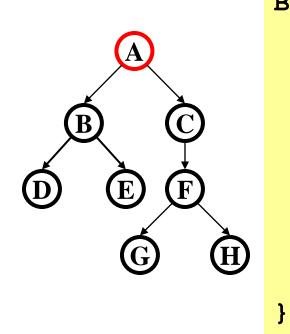


DFS(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop()
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

- A, C, F, H, G, B, E, D
- The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: trees

In a tree DFS and BFS are particularly easy to "see"



BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue()
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

- A, B, C, D, E, F, G, H
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths "optimal solutions"
 - Why?
 - Better for "what is the shortest path from **x** to **y**"
- But depth-first can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d then DFS stack never has more than d*p elements
 - But a queue for BFS may hold O(|V|) nodes
- A third approach:
 - Iterative deepening (IDFS): Try DFS but don't allow recursion more than **k** levels deep. If that fails, increment **k** and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.

Saving the path

- Our graph traversals can answer the reachability question:
 - "Is there a path from node x to node y?"
- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it's possible to get there!
- Easy:
 - Instead of just "marking" a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 - If just wanted path *length*, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler (Texas)

- Remember marked nodes are not re-enqueued
- Not shortest paths may not be unique

