CSE332: Data Abstractions
Lecture 16: Topological Sort / Graph Traversals

Tyler Robison
Summer 2010

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in
order such that if no vertex appears before any other
vertex that has an edge to it

Example input:

Cse 142
e
Example output: @

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440,
352

~CSE 33

Questions and comments

» Why do we perform topological sorts only on DAGSs?
Because a cycle means there is no correct answer

» Is there always a unique answer?
No, there can be 1 or more answers; depends on the graph

» What DAGs have exactly 1 answer?

Lists
» Terminology: A DAG represents a and a
topological sort produces a that is consistent

with it

Uses

» Figuring out how to finish your degree

» Computing the order in which to recompute cells in a
spreadsheet

» Determining the order to compile files using a
Makefile

» In general, taking a dependency graph and coming
up with an order of execution

A first algorithm for topological sort

1. Label each vertex with its in-degree

Labeling also called marking

Think “write in a field in the vertex”, though you could
also do this with a data structure (e.g., array) on the
side

2. While there are vertices not yet output:
Choose a vertex v with labeled with in-degree of O
Output v and remove it (conceptually) from the graph

For each vertex u adjacentto v (i.e. u such that (v,u) in
E), of u

Example Output:

Cse 3 Cse 44
CSE 33
Coe19Coera-CoeanX]
@ @ CSE 31
@l *CSE 33
Cse 29y
Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1

Example Output: 126

Cse 3 Cse 44
CSE 33
Coe19Coera-CoeanX]
@ @ CSE 31
@l *CSE 33
Cse 29y
Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? X
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1

Example Output: 126
142

Cse 3 Cse 44
CSE 33
Coe19Coera-CoeanX]
@ @ CSE 31
@l *CSE 33
Cse 29y
Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1
0

Example

Cse 3 Cse 44
CSE 33
Coe19Coera-CoeanX]
@ @ CSE 31
@l *CSE 33
Cse 29y
Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? Xx X X
In-degree: 0 O 1 2 1 1 2 1 1 1 1

2
1 O 0 O O
0

Output: 126
142
143

Example

Cse 3 Cse 44
CSE 33
Coe19Coera-CoeanX]
@ @ CSE 31
@l *CSE 33
Cse 29y
Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 0O O

0

10

Output: 126
142
143
311

:Example Output: 126

142
CSE 33 311
CSE 142—CSE 143{~CSE 31} 331
@ @ CSE 31
@» »CSE 33
Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X

1 2 1 1 2 1 1 1 1

In-degree: 0 O 2
1 0 1 0 0 0O O
0

11

:Example Output: 126

142
CSE 33 311
CSE 142—+CSE 143 ~CSE 31] 331
v 332
@ @ CSE 31
@» »CSE 33
Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X X

2 1 2 1 1 2 1 1 1 1
1 0 1 0 O 1 0 O 0
0 0

In-degree: 0 O

12

:Example Output: 126

142
CSE 33 311
CSE 14—CSE 143 ~CSE 311 331
' 332
@» »CSE 33
Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x X X X X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 O 1 0 O 0
0 0

13

Example Output: 126

142
== R S
CSE 33 sl1
CsE 14—~CsE 143 +CsE 311 331
: 332
@ @ CSE 31 215
341
@r ~CSE 33
Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X X X X

1 1 1 2 1 1 1 1

In-degree: 0 O 2 2
1 0 1 0 O 1 0 O 0
0 0

14

:Example Output: 126

142
== R S
CSE 33 sl1
CSE 142—~CSE 143 ~CSE 31} 331
: 332
@ @ CSE 31 215
341
@l »CSE 33 351
Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X X X X X X X X

2 1 2 1 1 2 1 1 1 1
1 0 1 0 O 1 0 O 0 O
0 0 0

In-degree: 0 O

15

Output: 126
142

e
311

331

332
CSE 31 312

341
»CSE 33 351

=

352
Node: 126 142 143 311 312 331 332 333 341 351 352 440 440

Removed? x X X X X X X X X X X X
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 O 1. 0 O O O
0 0 0

Example

CSE 33

CE1)~Ce 13
T

P

16

A couple of things to note

» Needed a vertex with in-degree of O to start
No cycles

» Ties between vertices with in-degrees of O can be
broken arbitrarily

Potentially many different correct orders

17

Running time?

labelEachVertexWithItsInDegree () ;
for (ctr=0; ctr < numVertices; ctr++) {
v = findNewVertexOfDegreeZero() ;
put v next in output
for each w adjacent to v
w.indegree--;

» What is the worst-case running time?
Initialization O(|V])
Sum of all find-new-vertex O(|V|?) (because each O(|V]))
Sum of all decrements O(|E|) (assuming adjacency list)
So total is O(]V|?) — not good for a sparse graph!

18

Doing better

The trick is to avoid searching for a zero-degree node every
time!

Keep the “pending” zero-degree nodes in a list, stack, queue, box,
table, or something

Order we process them affects output but not correctness or
efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree,
2. While queue is not empty

Output v and remove it from the graph

For each vertex u adjacentto v (i.e. u such that (v,u) in E),
decrement the in-degree of u,

19

Running time now?

labelAllAndEnqueueZeros () ;
for (ctr=0; ctr < numVertices; ctr++) {
v = dequeue () ;
put v next in output
for each w adjacent to v {
w.indegree--;
if (w.indegree==0) enqueue (V) ;

}

» What is the worst-case running time?
Initialization: O(|V|)
Sum of all enqueues and dequeues: O(|V|)
Sum of all decrements: O(|E|) (assuming adjacency list)

So total is O(|E| + |V|) — much better for sparse graph!
20

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find
all nodes reachable (i.e., there exists a path) from v

Possibly “do something” for each node
Print to output, set some field, etc.

Related:
» Is an undirected graph connected?

» Is a directed graph weakly / strongly connected?
For strongly, need a cycle back to starting node for all nodes

Basic idea:
Keep following nodes

But “mark” nodes after visiting them, so the traversal terminates
and processes each reachable node exactly once

21

Abstract idea

traverseGraph (Node start) ({
Set pending = emptySet() ;
pending.add(start)
mark start as visited
while (pending is not empty) {
next = pending.remove ()
for each node u adjacent to next
if(u is not marked) {
mark u
pending.add (u)

22

Running time and options

» Assuming add and remove are O(1), entire traversal is O(|E|)

» The order we traverse depends entirely on add and remove
Popular choice: a stack “depth-first graph search” “DFS”
Popular choice: a queue “breadth-first graph search” “BFS”

» DFS and BFS are “big ideas” in computer science

Depth: recursively explore one part before going back to the other
parts not yet explored

Breadth: Explore areas closer to the start node first

» Aside: These are important concepts in Al
Conceive of tree of all possible chess states
Traverse to find ‘optimal’ strategy

23

Example: trees

» In atree DFS and BFS are particularly easy to “see”
DFS (Node start) {

initialize
mark start
while (s 1is
next = s
for each

i1f(u is

stack s to hold start
as visited
not empty) {

-pop ()

node u adjacent to next
not marked)

mark u and push onto s

- AACFHGBED

— The marking is because we support arbitrary graphs and we want

to process each node exactly once

24

Example: trees

» In atree DFS and BFS are particularly easy to “see”
BFS (Node start) {

initialize queue q to hold start
mark start as visited
while (g is not empty) ({
next = q.dequeue ()
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto g

- ABCDEFG,H
A “level-order” traversal

25

Comparison

» Breadth-first always finds shortest paths — “optimal
solutions”

Why?
Better for “what is the shortest path from x to y”

» But depth-first can use less space in finding a path

If longest path in the graph is p and highest out-degree is d
then DFS stack never has more than d*p elements

But a queue for BFS may hold O(|V|) nodes

» A third approach:

Iterative deepening (IDFS): Try DFS but don't allow
recursion more than K levels deep. If that fails, increment K
and start the entire search over

Like BFS, finds shortest paths. Like DFS, less space.

26

Saving the path

» Our graph traversals can answer the reachability
guestion:

“Is there a path from node x to node y?”

» But what if we want to actually output the path?

Like getting driving directions rather than just knowing it's
possible to get there!

» Easy:

Instead of just “marking” a node, store the previous node
along the path (when processing u causes us to add v to
the search, set v.path field to be u)

When you reach the goal, follow path fields back to where
you started (and then reverse the answer)

If just wanted path length, could put the integer distance at
each node instead

27

Example using BFS

What is a path from Seattle to Tyler (Texas)
— Remember marked nodes are not re-enqueued
— Not shortest paths may not be unique

0 > \1 Chicago

Seattle

‘ Salt Lake City

San Francisco 5
28 Dallas

