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Topological Sort
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Problem: Given a DAG G=(V,E), output all the vertices in 
order such that if no vertex appears before any other 
vertex that has an edge to it

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 
352

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Questions and comments
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 Why do we perform topological sorts only on DAGs?

 Because a cycle means there is no correct answer

 Is there always a unique answer?

 No, there can be 1 or more answers; depends on the graph

 What DAGs have exactly 1 answer?

 Lists

 Terminology: A DAG represents a partial order and a 

topological sort produces a total order that is consistent 

with it



Uses
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 Figuring out how to finish your degree

 Computing the order in which to recompute cells in a 

spreadsheet

 Determining the order to compile files using a 

Makefile

 In general, taking a dependency graph and coming 

up with an order of execution



A first algorithm for topological sort

5

1. Label each vertex with its in-degree

 Labeling also called marking

 Think “write in a field in the vertex”, though you could 

also do this with a data structure (e.g., array) on the 

side

2. While there are vertices not yet output:

a) Choose a vertex v with labeled with in-degree of 0

b) Output v and remove it (conceptually) from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in 
E), decrement the in-degree of u



Example
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Output: 

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example

7

Output:  126 

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142 

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142

143 

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1      0 0                      0      0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142

143

311 

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x x x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1      0 1       0       0             0      0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142

143

311

331

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x x x x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1      0 1       0       0             0      0

0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142

143

311

331

332

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x x x x x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1      0 1       0       0     1      0      0              0

0              0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142

143

311

331

332

312

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x x x x x x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1      0 1       0       0     1      0      0              0

0              0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142

143

311

331

332

312

341

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x x x x x x x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1      0 1       0       0     1      0      0              0

0              0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142

143

311

331

332

312

341

351

Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x x x x x x x x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1      0 1       0       0     1      0      0      0      0

0              0                       0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



Example
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Output:  126

142

143

311

331

332

312

341

351

333

352

440 
Node:          126 142 143  311  312  331  332  333  341  351  352  440

Removed?   x     x x x x x x x x x x x

In-degree:    0     0       2     1      2       1       1     2      1      1      1      1

1      0 1       0       0     1      0      0      0      0

0              0                       0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH

126

CSE 440

…



A couple of things to note
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 Needed a vertex with in-degree of 0 to start

 No cycles

 Ties between vertices with in-degrees of 0 can be 

broken arbitrarily

 Potentially many different correct orders



Running time?
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 What is the worst-case running time?

 Initialization O(|V|)

 Sum of all find-new-vertex O(|V|2) (because each O(|V|))

 Sum of all decrements O(|E|) (assuming adjacency list)

 So total is O(|V|2) – not good for a sparse graph!

labelEachVertexWithItsInDegree();

for(ctr=0; ctr < numVertices; ctr++){

v = findNewVertexOfDegreeZero();

put v next in output

for each w adjacent to v

w.indegree--;

}



Doing better

19

The trick is to avoid searching for a zero-degree node every 
time!
 Keep the “pending” zero-degree nodes in a list, stack, queue, box, 

table, or something

 Order we process them affects output but not correctness or 
efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree 
nodes

2. While queue is not empty
a) v = dequeue()

b) Output v and remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 
decrement the in-degree of u, if new degree is 0, enqueue it



Running time now?
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 What is the worst-case running time?

 Initialization: O(|V|)

 Sum of all enqueues and dequeues: O(|V|)

 Sum of all decrements: O(|E|) (assuming adjacency list)

 So total is O(|E| + |V|) – much better for sparse graph!

labelAllAndEnqueueZeros();

for(ctr=0; ctr < numVertices; ctr++){

v = dequeue();

put v next in output

for each w adjacent to v {

w.indegree--;

if(w.indegree==0) enqueue(v);

}

}



Graph Traversals
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Next problem: For an arbitrary graph and a starting node v, find 
all nodes reachable (i.e., there exists a path) from v
 Possibly “do something” for each node

 Print to output, set some field, etc.

Related:

 Is an undirected graph connected?

 Is a directed graph weakly / strongly connected?
 For strongly, need a cycle back to starting node for all nodes

Basic idea: 
 Keep following nodes

 But “mark” nodes after visiting them, so the traversal terminates 
and processes each reachable node exactly once



Abstract idea
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traverseGraph(Node start) {

Set pending = emptySet();

pending.add(start)

mark start as visited

while(pending is not empty) {

next = pending.remove()

for each node u adjacent to next

if(u is not marked) {

mark u

pending.add(u)

}

}

}



Running time and options
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 Assuming add and remove are O(1), entire traversal is O(|E|)

 The order we traverse depends entirely on add and remove

 Popular choice: a stack  “depth-first graph search”  “DFS”

 Popular choice: a queue “breadth-first graph search” “BFS”

 DFS and BFS are “big ideas” in computer science

 Depth: recursively explore one part before going back to the other 
parts not yet explored

 Breadth: Explore areas closer to the start node first

 Aside: These are important concepts in AI

 Conceive of tree of all possible chess states

 Traverse to find „optimal‟ strategy



Example: trees
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 In a tree DFS and BFS are particularly easy to “see” 

A

B

D E

C

F

HG

DFS(Node start) {

initialize stack s to hold start

mark start as visited

while(s is not empty) {

next = s.pop()

for each node u adjacent to next

if(u is not marked)

mark u and push onto s

}

}

• A, C, F, H, G, B, E, D

– The marking is because we support arbitrary graphs and we want 

to process each node exactly once



Example: trees
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 In a tree DFS and BFS are particularly easy to “see” 

A

B

D E

C

F

HG

BFS(Node start) {

initialize queue q to hold start

mark start as visited

while(q is not empty) {

next = q.dequeue()

for each node u adjacent to next

if(u is not marked)

mark u and enqueue onto q

}

}

• A, B, C, D, E, F, G, H

• A “level-order” traversal



Comparison
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 Breadth-first always finds shortest paths – “optimal 
solutions”
 Why?

 Better for “what is the shortest path from x to y”

 But depth-first can use less space in finding a path
 If longest path in the graph is p and highest out-degree is d

then DFS stack never has more than d*p elements

 But a queue for BFS may hold O(|V|) nodes

 A third approach:
 Iterative deepening (IDFS): Try DFS but don‟t allow 

recursion more than K levels deep.  If that fails, increment K
and start the entire search over

 Like BFS, finds shortest paths.  Like DFS, less space.



Saving the path
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 Our graph traversals can answer the reachability
question:
 “Is there a path from node x to node y?”

 But what if we want to actually output the path?
 Like getting driving directions rather than just knowing it‟s 

possible to get there!

 Easy: 
 Instead of just “marking” a node, store the previous node 

along the path (when processing u causes us to add v to 
the search, set v.path field to be u)

 When you reach the goal, follow path fields back to where 
you started (and then reverse the answer)

 If just wanted path length, could put the integer distance at 
each node instead



Example using BFS
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Seattle

San Francisco

Dallas

Salt Lake City

What is a path from Seattle to Tyler (Texas)

– Remember marked nodes are not re-enqueued

– Not shortest paths may not be unique

Chicago

Tyler

1

1

1

2

3

0


