

1

CSE332: Data Abstractions

Lecture 15: Introduction to Graphs

Tyler Robison

2010 Summer

2

Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept
- A graph is a pair of sets
 - G = (V, E)
 - A set of vertices, also known as nodes

$$\mathbf{V} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$

A set of edges

 $E = \{e_1, e_2, ..., e_m\}$

- Each edge e_i is a pair of vertices
- An edge "connects" the vertices
- Graphs can be directed or undirected

Han Leia

V = {Han,Leia,Luke}

$$E = \{ (Luke, Leia), \}$$

(Han,Leia),

(Leia, Han) }

For each, what are the vertices and what are the edges?

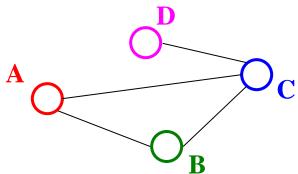
- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

• • • •

Quite versatile & useful

Undirected Graphs

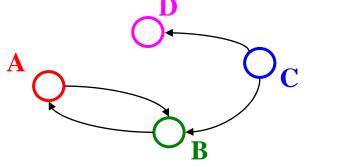
- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"



- Thus, $(u, v) \in E$ implies $(v, u) \in E$.
 - Only one of these edges needs to be in the set; the other is implicit
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed graphs

 In directed graphs (sometimes called digraphs), edges have a specific direction



A 2 edges here

- Thus, $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ does not imply $(\mathbf{v}, \mathbf{u}) \in \mathbf{E}$.
 - Let (u,v) ∈ E mean u → v and call u the source and v the destination

or

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source

Self-edges, connectedness, etc.

- > A self-edge a.k.a. a loop is an edge of the form (u,u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (in which case often implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- (Undirected) Connected: We can follow edges from any node to get to any other node
 - Not necessarily connected, even if every node has non-zero degree

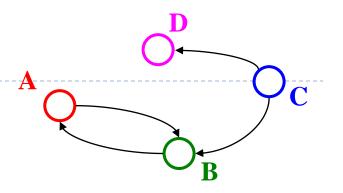
More notation

For a graph G = (V, E):

- ► **|V|** is the number of vertices
- ▶ |E| is the number of edges
 - Minimum edges?
 - 0
 - Maximum edges for undirected?
 - ▶ $|V| |V+1|/2 \in O(|V|^2)$
 - Maximum edges for directed?
 - $|V|^{2} \in O(|V|^{2})$

(assuming self-edges allowed, else subtract |v|)

- If $(u, v) \in E$
 - Then v is a neighbor of u,
 i.e., v is adjacent to u
 - Order matters for directed edges



Examples again

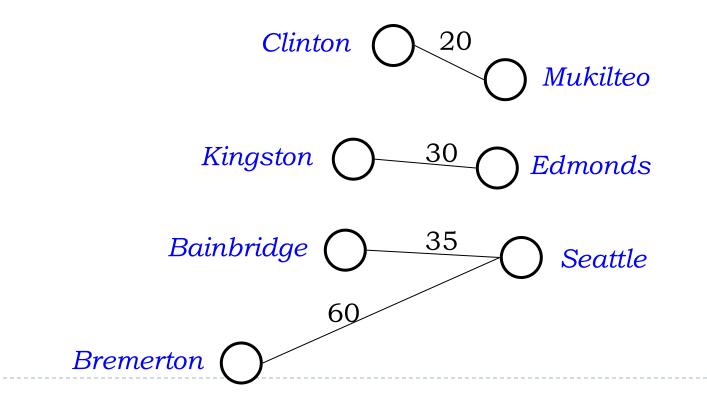
Which would use directed edges? Which would have selfedges? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

• • •

Weighted graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow *negative weights*; many don't



Examples

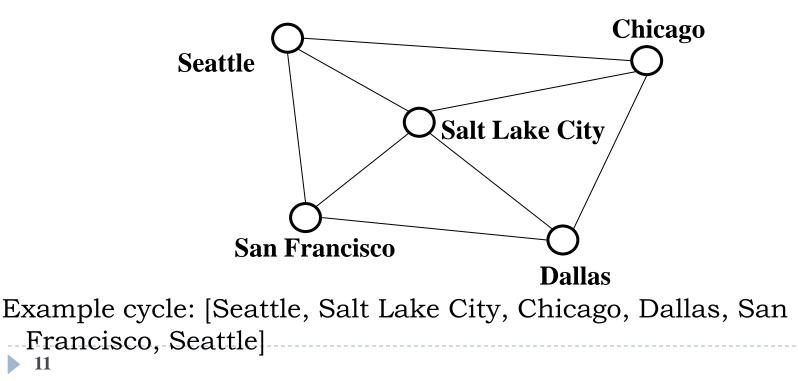
What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

11

- ▶ A path is a list of vertices $[\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_n]$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$ for all $0 \leq i < n$. Say "a path from \mathbf{v}_0 to \mathbf{v}_n "
- A cycle is a path that begins and ends at the same node $(\mathbf{v}_0 = = \mathbf{v}_n)$

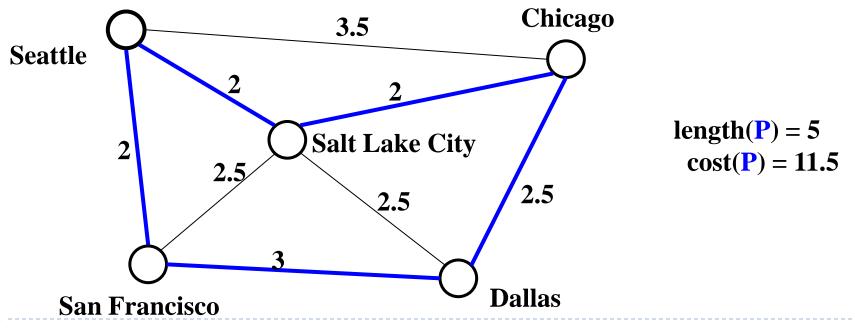


Path Length and Cost

- > Path length: Number of edges in a path
- Path cost: sum of the weights of each edge

Example where

P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]



Simple paths and cycles

- A simple path repeats no vertices, except the first might be the last
 [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths/cycles in directed graphs

Example: $A \cap C$ B

Is there a path from A to D?

Does the graph contain any cycles?

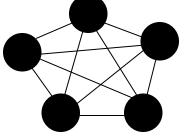
Undirected graph connectivity

An undirected graph is connected if for all pairs of vertices u, v, there exists a path from u to v

Connected graph

Disconnected graph

An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v

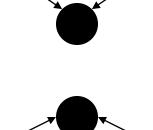


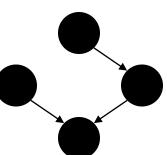
Directed graph connectivity

 A directed graph is strongly connected if there is a path from every vertex to every other vertex

 A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges

 A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex





Examples

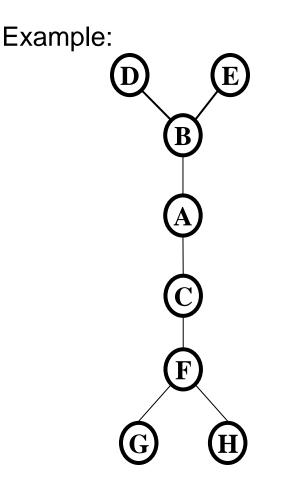
For undirected graphs: connected? For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Trees as graphs

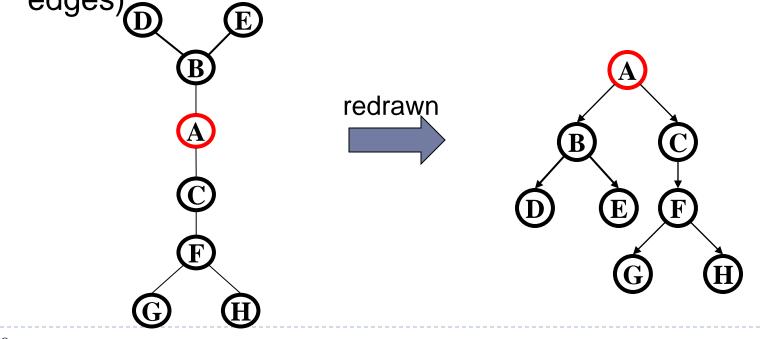
When talking about graphs, we say a tree is a graph that is:

- acyclic
- connected
- undirected
- So all trees are graphs, but not all graphs are trees



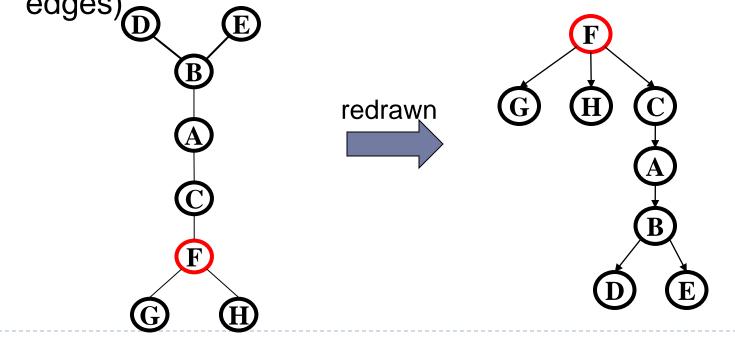
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)



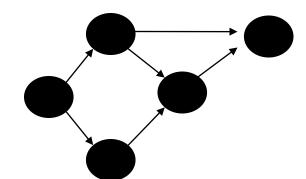
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)



Directed acyclic graphs (DAGs)

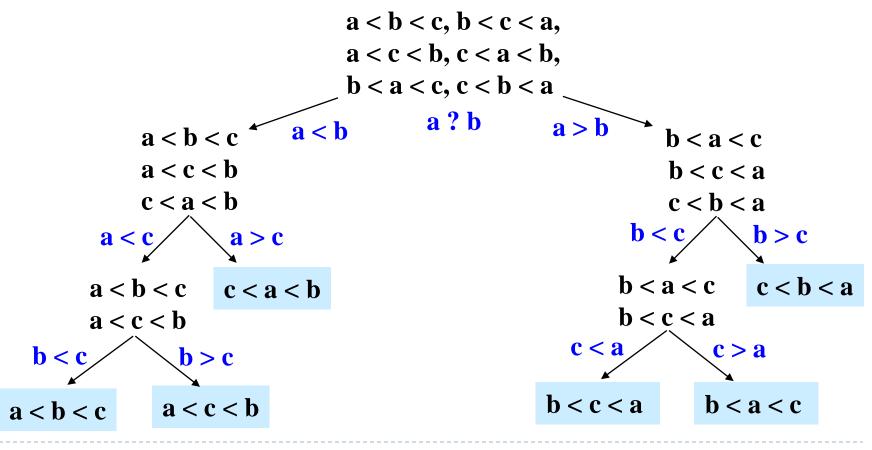
- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree



- Every DAG is a directed graph
- But not every directed graph is a DAG

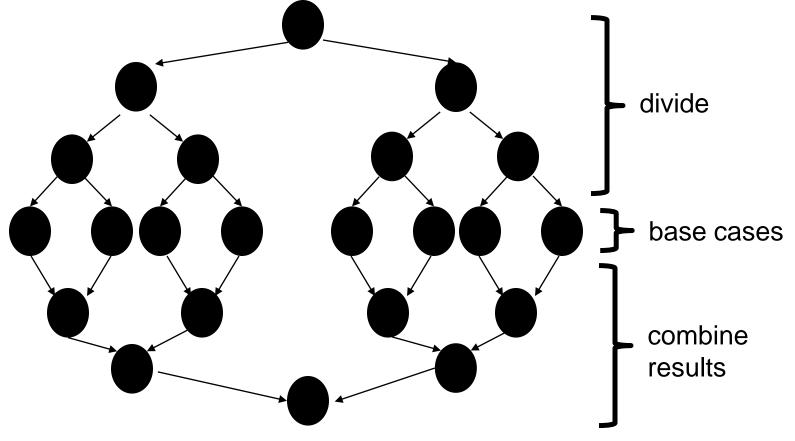
Problem Representation

- Decision Tree as rooted, directed tree
- Start at root; follow outcome of comparisons



Problem Representation

- Quick/MergeSort as a graph
- Nodes as conceptual states of data



Density / sparseness

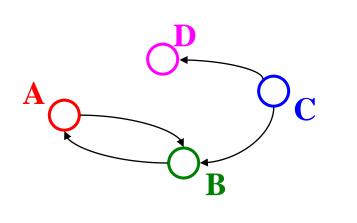
- ▶ Recall: In an undirected graph, $0 \le |E| \le |V|^2$
- Recall: In a directed graph: $0 \le |E| \le |V|^2$
- So for any graph, |E| is $O(|V|^2)$
- One more fact: If an undirected graph is *connected*, then $|V|\text{-}1 \leq |E|$
- Because |E| is often much smaller than its maximum size, we do not always approximate as |E| as $O(|V|^2)$
 - > This is a correct bound, it just is often not tight
 - If it is tight, i.e., |E| is $\Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If |E| is O(|V|) we say the graph is sparse
 - More sloppily, sparse means "most possible edges missing"

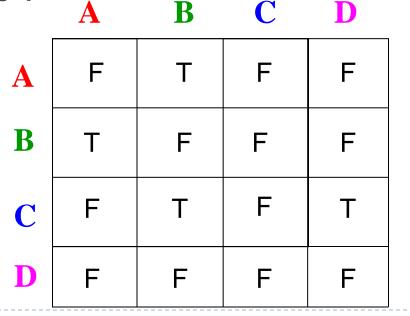
Now the data structure

- Okay, so graphs are really useful for lots of data and questions we might ask like "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- Which data structure is "best" can depend on:
 - properties of the graph (e.g., dense versus sparse)
 - the common queries (e.g., is (u,v) an edge versus what are the neighbors of node u)
- So we'll discuss the two standard graph representations...
 - Different trade-offs, particularly time versus space

Adjacency matrix

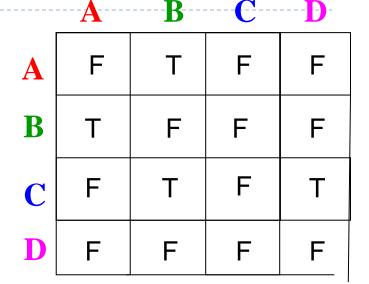
- > Assign each node a number from 0 to |v|-1
- A |V| x |V| matrix (i.e., 2-D array) of booleans (or 1 vs. 0)
 - If M is the matrix, then M[u][v] == true means there is an edge from u to v

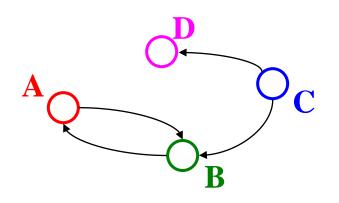




Adjacency matrix properties

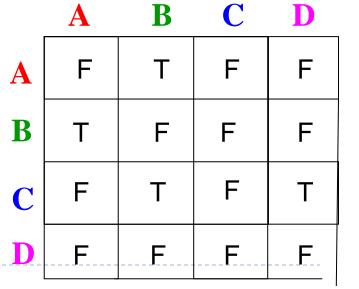
- Running time to:
 - Get a vertex's out-edges: O(|V|)
 - ► Get a vertex's in-edges: *O*(|V|)
 - Decide if some edge exists: O(1)
 - Insert an edge: O(1)
 - Delete an edge: O(1)
- Space requirements:
 |V|² bits
- Best for dense graphs





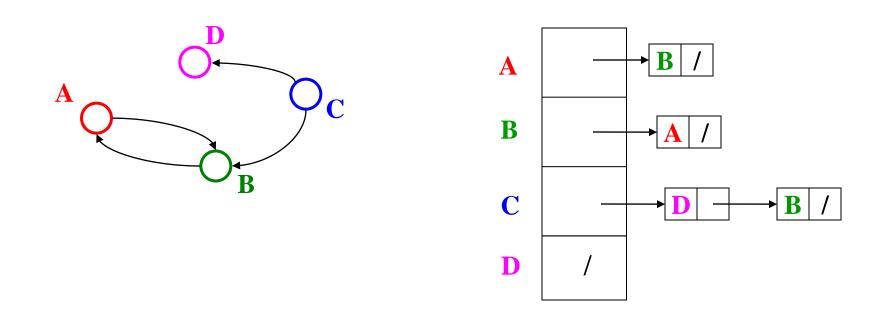
Adjacency matrix properties

- How will the adjacency matrix vary if (un)directed?
 - Undirected: Will be symmetric about diagonal axis
- How can we adapt the representation for weighted graphs?
 - Instead of a boolean, store an int/double in each cell
 - Need some value to represent 'not an edge'
 - Say -1 or 0



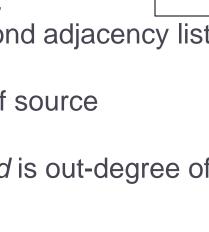
Adjacency List

- ► Assign each node a number from 0 to |V|-1
- An array of length |v| in which each entry stores a list (e.g., linked list) of all adjacent vertices



Adjacency List Properties

- Running time to:
 - Get all of a vertex's out-edges:
 O(d) where d is out-degree of vertex
 - Get all of a vertex's in-edges:
 O(|E|) (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 O(d) where d is out-degree of source
 - Insert an edge: O(1)
 - Delete an edge: O(d) where d is out-degree of source
- Space requirements:
 O(|V|+|E|)
- Best for sparse graphs: so usually just stick with linked lists



A

B

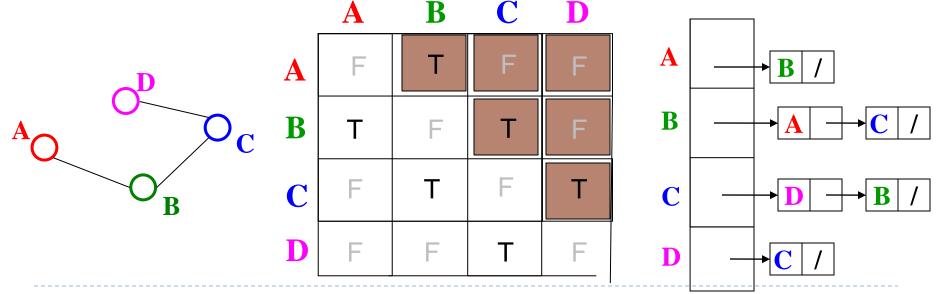
C

B

Undirected graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Could save space; only ~1/2 the array is used
- Lists: Each edge in two lists to support efficient "get all neighbors"



Next...

Okay, we can represent graphs

Now let's implement some useful and non-trivial algorithms

Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors