
CSE332: Data Abstractions

Lecture 15: Introduction to Graphs

Tyler Robison

2010 Summer

1

Graphs

2

 A graph is a formalism for representing relationships
among items

 Very general definition because very general concept

 A graph is a pair of sets

G = (V,E)

 A set of vertices, also known as nodes

V = {v1,v2,…,vn}

 A set of edges

E = {e1,e2,…,em}

 Each edge ei is a pair of vertices

 An edge “connects” the vertices

 Graphs can be directed or undirected

Han

Leia

Luke

V = {Han,Leia,Luke}

E = {(Luke,Leia),

(Han,Leia),

(Leia,Han)}

Some graphs

3

For each, what are the vertices and what are the edges?

 Web pages with links

 Facebook friends

 “Input data” for the Kevin Bacon game

 Methods in a program that call each other

 Road maps (e.g., Google maps)

 Airline routes

 Family trees

 Course pre-requisites

 …

Quite versatile & useful

Undirected Graphs

4

 In undirected graphs, edges have no specific direction

 Edges are always “two-way”

• Thus, (u,v) E implies (v,u) E.

– Only one of these edges needs to be in the set; the

other is implicit

• Degree of a vertex: number of edges containing that vertex

– Put another way: the number of adjacent vertices

A

B

C

D

Directed graphs

5

 In directed graphs (sometimes called digraphs),
edges have a specific direction

• Thus, (u,v) E does not imply (v,u) E.

• Let (u,v) E mean u → v and call u the source and

v the destination

• In-Degree of a vertex: number of in-bound edges, i.e.,

edges where the vertex is the destination

• Out-Degree of a vertex: number of out-bound edges, i.e.,

edges where the vertex is the source

or

2 edges

here

A

B

C

D
A

B

C

Self-edges, connectedness, etc.

6

 A self-edge a.k.a. a loop is an edge of the form (u,u)

 Depending on the use/algorithm, a graph may have:

 No self edges

 Some self edges

 All self edges (in which case often implicit, but we will be explicit)

 A node can have a degree / in-degree / out-degree of

zero

 (Undirected) Connected: We can follow edges from any

node to get to any other node

 Not necessarily connected, even if every node has non-zero

degree

More notation

7

For a graph G=(V,E):

 |V| is the number of vertices

 |E| is the number of edges
 Minimum edges?

 0

 Maximum edges for undirected?
 |V||V+1|/2 O(|V|2)

 Maximum edges for directed?
 |V|2 O(|V|2)

(assuming self-edges allowed, else subtract |V|)

 If (u,v) E

 Then v is a neighbor of u,

i.e., v is adjacent to u

 Order matters for directed edges

A

B

C

D

Examples again

8

Which would use directed edges? Which would have self-
edges? Which could have 0-degree nodes?

 Web pages with links

 Facebook friends

 “Input data” for the Kevin Bacon game

 Methods in a program that call each other

 Road maps (e.g., Google maps)

 Airline routes

 Family trees

 Course pre-requisites

 …

Weighted graphs

9

 In a weighed graph, each edge has a weight a.k.a. cost

 Typically numeric (most examples will use ints)

 Orthogonal to whether graph is directed

 Some graphs allow negative weights; many don‟t

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Examples

10

What, if anything, might weights represent for each of
these? Do negative weights make sense?

 Web pages with links

 Facebook friends

 “Input data” for the Kevin Bacon game

 Methods in a program that call each other

 Road maps (e.g., Google maps)

 Airline routes

 Family trees

 Course pre-requisites

 …

Paths and Cycles

11

 A path is a list of vertices [v0,v1,…,vn] such that (vi,vi+1) E
for all 0 i < n. Say “a path from v0 to vn”

 A cycle is a path that begins and ends at the same node
(v0==vn)

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example cycle: [Seattle, Salt Lake City, Chicago, Dallas, San

Francisco, Seattle]

Path Length and Cost

12

 Path length: Number of edges in a path

 Path cost: sum of the weights of each edge

Example where

P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Seattle

San Francisco Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) = 5

cost(P) = 11.5

Simple paths and cycles

13

 A simple path repeats no vertices, except the first might
be the last

[Seattle, Salt Lake City, San Francisco, Dallas]

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

 Recall, a cycle is a path that ends where it begins

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

 A simple cycle is a cycle and a simple path

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths/cycles in directed graphs

14

Example:

Is there a path from A to D?

Does the graph contain any cycles?

A

B

C

D

Undirected graph connectivity

15

 An undirected graph is connected if for all

pairs of vertices u,v, there exists a path from u to v

 An undirected graph is complete, a.k.a. fully
connected if for all pairs of vertices u,v, there exists

an edge from u to v

Connected graph Disconnected graph

Directed graph connectivity

16

 A directed graph is strongly connected if
there is a path from every vertex to every
other vertex

 A directed graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

 A complete a.k.a. fully connected
directed graph has an edge from every
vertex to every other vertex

Examples

17

For undirected graphs: connected? For directed graphs:
strongly connected? weakly connected?

 Web pages with links

 Facebook friends

 “Input data” for the Kevin Bacon game

 Methods in a program that call each other

 Road maps (e.g., Google maps)

 Airline routes

 Family trees

 Course pre-requisites

 …

Trees as graphs

18

When talking about

graphs, we say a tree

is a graph that is:

 acyclic

 connected

 undirected

So all trees are graphs,

but not all graphs are

trees

A

B

D E

C

F

HG

Example:

Rooted Trees

19

 We are more accustomed to rooted trees where:
 We identify a unique (“special”) root

 We think of edges as directed: parent to children

 Given a tree, once you pick a root, you have a unique
rooted tree (just drawn differently and with undirected
edges)

A

B

D E

C

F

HG

redrawn

A

B

D E

C

F

HG

Rooted Trees

20

 We are more accustomed to rooted trees where:
 We identify a unique (“special”) root

 We think of edges as directed: parent to children

 Given a tree, once you pick a root, you have a unique
rooted tree (just drawn differently and with undirected
edges)

A

B

D E

C

F

HG

redrawn

F

G H C

A

B

D E

Directed acyclic graphs (DAGs)

21

 A DAG is a directed graph with no (directed)

cycles

 Every rooted directed tree is a DAG

 But not every DAG is a rooted directed tree

 Every DAG is a directed graph

 But not every directed graph is a DAG

Problem Representation

22

 Decision Tree as rooted, directed tree

 Start at root; follow outcome of comparisons
a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b a > ba ? b

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a > ca < c

b < c b > c

b < c b > c

c < a c > a

Problem Representation

23

 Quick/MergeSort as a graph

 Nodes as conceptual states of data

base cases

divide

combine

results

Density / sparseness

24

 Recall: In an undirected graph, 0 ≤ |E| ≤ |V|2

 Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

 So for any graph, |E| is O(|V|2)

 One more fact: If an undirected graph is connected, then |V|-1
≤ |E|

 Because |E| is often much smaller than its maximum
size, we do not always approximate as |E| as O(|V|2)

 This is a correct bound, it just is often not tight

 If it is tight, i.e., |E| is (|V|2) we say the graph is dense

 More sloppily, dense means “lots of edges”

 If |E| is O(|V|) we say the graph is sparse

 More sloppily, sparse means “most possible edges missing”

Now the data structure

25

 Okay, so graphs are really useful for lots of data and
questions we might ask like “what‟s the lowest-cost path
from x to y”

 But we need a data structure that represents graphs

 Which data structure is “best” can depend on:
 properties of the graph (e.g., dense versus sparse)

 the common queries (e.g., is (u,v) an edge versus what are
the neighbors of node u)

 So we‟ll discuss the two standard graph
representations…
 Different trade-offs, particularly time versus space

Adjacency matrix

26

 Assign each node a number from 0 to |V|-1

 A |V| x |V| matrix (i.e., 2-D array) of booleans (or 1
vs. 0)
 If M is the matrix, then M[u][v] == true means

there is an edge from u to v
A B C

A

B

C

D

D

A

B

C

D T

T

T T

F F F

F F F

F F

F F F F

Adjacency matrix properties

27

 Running time to:

 Get a vertex‟s out-edges: O(|V|)

 Get a vertex‟s in-edges: O(|V|)

 Decide if some edge exists: O(1)

 Insert an edge: O(1)

 Delete an edge: O(1)

 Space requirements:

 |V|2 bits

 Best for dense graphs

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

A

B

C

D

Adjacency matrix properties

28

 How will the adjacency matrix vary if (un)directed?

 Undirected: Will be symmetric about diagonal axis

 How can we adapt the representation for weighted

graphs?

 Instead of a boolean, store an int/double in each cell

 Need some value to represent „not an edge‟

 Say -1 or 0 A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Adjacency List

29

 Assign each node a number from 0 to |V|-1

 An array of length |V| in which each entry stores a
list (e.g., linked list) of all adjacent vertices

A

B

C

D

A

B

C

D

B /

A /

D B /

/

Adjacency List Properties

30

 Running time to:
 Get all of a vertex‟s out-edges:

O(d) where d is out-degree of vertex

 Get all of a vertex‟s in-edges:

O(|E|) (but could keep a second adjacency list for this!)

 Decide if some edge exists:

O(d) where d is out-degree of source

 Insert an edge: O(1)

 Delete an edge: O(d) where d is out-degree of source

 Space requirements:
 O(|V|+|E|)

 Best for sparse graphs: so usually just stick with
linked lists

A

B

C

D

B /

A /

D B /

/

Undirected graphs

31

Adjacency matrices & adjacency lists both do fine for

undirected graphs

 Matrix: Could save space; only ~1/2 the array is used

 Lists: Each edge in two lists to support efficient “get

all neighbors”

A

B

C

D

A B C

A

B

C

D

D

T

T

T T

F F F

F T F

F F

F F T F

F

T

T A

B

C

D

B /

A

D B /

C /

C /

Next…

32

Okay, we can represent graphs

Now let‟s implement some useful and non-trivial

algorithms

 Topological sort: Given a DAG, order all the vertices

so that every vertex comes before all of its neighbors

