
CSE332: Data Abstractions

Lecture 14: Beyond Comparison Sorting

Tyler Robison

Summer 2010

1

The Big Picture

2

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

How fast can we sort?

3

 Heapsort & mergesort have O(n log n) worst-case
running time

 Quicksort has O(n log n) average-case running times

 These bounds are all tight, actually (n log n)

 So maybe we need to dream up another algorithm with a
lower asymptotic complexy
 Maybe find something with O(n) or O(n log log n) (recall

loglogn is smaller than logn)

 Instead: prove that this is impossible
 Assuming our comparison model: The only operation an algorithm

can perform on data items is a 2-element comparison

 Show that the best we can do is O(nlogn), for the worst-case

Different View on Sorting

4

 Assume we have n elements to sort

 And for simplicity, none are equal (no duplicates)

 How many permutations (possible orderings) of the elements?

 Example, n=3, 6 possibilities:

a[0]<a[1]<a[2] or a[0]<a[2]<a[1] or a[1]<a[0]<a[2]

or

a[1]<a[2]<a[0] or a[2]<a[0]<a[1] or a[2]<a[1]<a[0]

 That is, these are the only possible permutations on the
orderings of 3 distinct items

 Generalize to n (distinct) items:

 n choices for least element, then n-1 for next, then n-2 for next, …

 n(n-1)(n-2)…(2)(1) = n! possible orderings

Describing every comparison sort

5

 A different way of thinking of sorting is that the

sorting algorithm has to “find” the right answer

among the n! possible answers

 Starts “knowing nothing”; “anything‟s possible”

 Gains information with each comparison, eliminating

some possibilities

 Intuition: At best, each comparison performed can eliminate half

of the remaining possibilities

 In the end narrows down to a single possibility

Representing the Sort Problem

6

 Can represent this sorting process as a decision tree
 Nodes are sets of “remaining possibilities”

 At root, anything is possible; no option eliminated

 Edges represent comparisons made, and the node resulting
from a comparison contains only consistent possibilities
 Ex: Say we need to know whether a<b or b<a; our root for n=2

 A comparison between a & b will lead to a node that contains only
one possibility

 Note: This tree is not a data structure, it‟s what our proof uses
to represent “the most any algorithm could know”

 Aside: Decision trees are a neat tool, sometimes used in
AI to, well, make decisions
 At each state, examine information to reduce space of

possibilities

 Classical example: „Should I play tennis today?‟; ask questions
like „Is it raining?‟, „Is it hot?‟, etc. to work towards an answer

Decision tree for n=3

7

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b a > ba ? b

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a > ca < c

b < c b > c

b < c b > c

c < a c > a

•Each leaf is one outcome

•The leaves contain all outcomes; all possible orderings

of a, b, c

Given sequence: a, b, c

(probably unordered)

What the decision tree tells us

8

 A binary tree because each comparison has 2 possible
outcomes
 Perform only comparisons between 2 elements; binary result

 Ex: Is a<b? Yes or no?

 We assume no duplicate elements

 Assume algorithm doesn‟t ask redundant questions

 Because any data is possible, any algorithm needs to ask
enough questions to produce all n! answers
 Each answer is a leaf (no more questions to ask)

 So the tree must be big enough to have n! leaves

 Running any algorithm on any input will at best correspond to
one root-to-leaf path in the decision tree

 So no algorithm can have worst-case running time better than
the height of the decision tree

Example: Sorting some data a,b,c

9

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

a ? b

possible orders

actual order

Where are we

10

 Proven: No comparison sort can have worst-case running
time better than the height of a binary tree with n! leaves

 Turns out average-case is same asymptotically

 Great! Now how tall is that…

 Show that a binary tree with n! leaves has height (n
log n)

 That is nlogn is the lower bound; the height must be at least
that

 Factorial function grows very quickly

 Then we‟ll conclude: Comparison Sorting is (n log n)

 This is an amazing computer-science result: proves all the
clever programming in the world can‟t sort in linear time

Lower bound on height

11

 The height of a binary tree with L leaves is at least log2 L
 If we pack them in as tightly as possible, each row has about 2x the

previous row‟s nodes

 So the height of our decision tree, h:

h log2 (n!)

= log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

= log2 n + log2 (n-1) + … + log2 1 property of logarithms

 log2 n + log2 (n-1) + … + log2 (n/2) drop smaller terms (0)

 (n/2) log2 (n/2) each of the n/2 terms left is log2 (n/2)

= (n/2)(log2 n - log2 2) property of logarithms

= (1/2)nlog2 n – (1/2)n arithmetic

So h (1/2)nlog2 n – (1/2)n

“=“ (n log n)

The Big Picture

12

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Change the model – assume

more than „compare(a,b)‟

Non-Comparison Sorts

13

 Say we have a list of integers between 0 & 9 (ignore
associated data for the moment)
 Size of list to sort could be huge, but we‟d have lots of duplicate

values

 Assume our data is stored in „int array[]‟; how about…

int[] counts=new int[10];

//init to counts to 0‟s

for(int i=0;i<array.length;i++) counts[array[i]]++;

 Can iterate through array in linear time

 Now return to array in sorted order; first counts[0] slots will be 0,
next counts[1] will be 1…

 We can put elements, in order, into array[] in O(n)

 This works because array assignment is sort of „comparing‟
against every element currently in counts[] in constant time
 Not merely a 2-way comparison, but an n-way comparison

 Thus not under restrictions of nlogn for Comparison Sorts

BucketSort (a.k.a. BinSort)

14

 If all values to be sorted are known to be integers

between 1 and K (or any small range)…

 Create an array of size K and put each element in its

proper bucket (a.k.a. bin)

 Output result via linear pass through array of buckets

count array

1 3

2 1

3 2

4 2

5 3

• Example:

K=5

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

If data is only integers, don’t even need to store

anything more than a count of how times that

bucket has been used

Analyzing bucket sort

15

 Overall: O(n+K)

 Linear in n, but also linear in K

 (n log n) lower bound does not apply because this is not

a comparison sort

 Good when range, K, is smaller (or not much larger)

than number of elements, n

 Don‟t spend time doing lots of comparisons of duplicates!

 Bad when K is much larger than n

 Wasted space; wasted time during final linear O(K) pass

 If K~n2, not really linear anymore

Bucket Sort with Data

16

 Most real lists aren‟t just #‟s; we have data

 Each bucket is a list (say, linked list)

 To add to a bucket, place at end in O(1) (say, keep a
pointer to last element)

count array

1

2

3

4

5

• Example: Movie ratings;

scale 1-5;1=bad, 5=excellent

Input=

5: Casablanca

3: Harry Potter movies

5: Star Wars Original

Trilogy

1: Happy Feet

Happy Feet

Harry Potter

Casablanca Star Wars

•Result: 1: Happy Feet, 3: Harry Potter, 5: Casablanca, 5: Star Wars

•This result is ‘stable’; Casablanca still before Star Wars

Radix sort

17

 Radix = “the base of a number system”
 Examples will use 10 because we are used to that

 In implementations use larger numbers
 For example, for ASCII strings, might use 128

 Idea:
 Bucket sort on one digit at a time

 Number of buckets = radix

 Starting with least significant digit, sort with Bucket Sort

 Keeping sort stable

 Do one pass per digit

 After k passes, the last k digits are sorted

 Aside: Origins go back to the 1890 U.S. census

Example

18

Radix = 10

Input: 478

537

9

721

3

38

143

67

First pass:

bucket sort by ones digit

Iterate through and collect into list

List is sorted by first digit

1

721

2 3

3

143

4 5 6 7

537

67

8

478

38

9

9

0

Order now: 721

3

143

537

67

478

38

9

Example

19

Second pass:

stable bucket sort by tens digit

If we chop off the 100‟s place,

these #‟s are sorted

Order now: 3

9

721

537

38

143

67

478

Radix = 10

Order was: 721

3

143

537

67

478

38

9

1 2

721

3

537

38

4

143

5 6

67

7

478

8 90

3

9

Example

20

Third pass:

stable bucket sort by 100s digit

Only 3 digits: We‟re done

Order now: 3

9

38

67

143

478

537

721

Radix = 10
1

143

2 3 4

478

5

537

6 7

721

8 90

3

9

38

67Order was: 3

9

721

537

38

143

67

478

Analysis

21

Performance depends on:

 Input size: n

 Number of buckets = Radix: B
 Base 10 #: 10; binary #: 2; Alpha-numeric char: 62

 Number of passes = “Digits”: P

 Ages of people: 3; Phone #: 10; Person‟s name: ?

 Work per pass is 1 bucket sort: O(B+n)
 Each pass is a Bucket Sort

 Total work is O(P(B+n))
 We do „P‟ passes, each of which is a Bucket Sort

Comparison

22

Compared to comparison sorts, sometimes a win, but

often not

 Example: Strings of English letters up to length 15

 Approximate run-time: 15*(52 + n)

 This is less than n log n only if n > 33,000

 Of course, cross-over point depends on constant factors of the

implementations plus P and B

 And radix sort can have poor locality properties

 Not really practical for many classes of keys

 Strings: Lots of buckets

Last word on sorting

23

 Simple O(n2) sorts can be fastest for small n
 selection sort, insertion sort (latter linear for mostly-sorted)

 good for “below a cut-off” to help divide-and-conquer sorts

 O(n log n) sorts
 heap sort, in-place but not stable nor parallelizable

 merge sort, not in place but stable and works as external
sort

 quick sort, in place but not stable and O(n2) in worst-case
 often fastest, but depends on costs of comparisons/copies

 (n log n) is worst-case and average lower-bound for
sorting by comparisons

 Non-comparison sorts
 Bucket sort good for small number of key values

 Radix sort uses fewer buckets and more phases

 Best way to sort? It depends

