
CSE332: Data Abstractions

Lecture 14: Beyond Comparison Sorting

Tyler Robison

Summer 2010

1

The Big Picture

2

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

How fast can we sort?

3

 Heapsort & mergesort have O(n log n) worst-case
running time

 Quicksort has O(n log n) average-case running times

 These bounds are all tight, actually (n log n)

 So maybe we need to dream up another algorithm with a
lower asymptotic complexy
 Maybe find something with O(n) or O(n log log n) (recall

loglogn is smaller than logn)

 Instead: prove that this is impossible
 Assuming our comparison model: The only operation an algorithm

can perform on data items is a 2-element comparison

 Show that the best we can do is O(nlogn), for the worst-case

Different View on Sorting

4

 Assume we have n elements to sort

 And for simplicity, none are equal (no duplicates)

 How many permutations (possible orderings) of the elements?

 Example, n=3, 6 possibilities:

a[0]<a[1]<a[2] or a[0]<a[2]<a[1] or a[1]<a[0]<a[2]

or

a[1]<a[2]<a[0] or a[2]<a[0]<a[1] or a[2]<a[1]<a[0]

 That is, these are the only possible permutations on the
orderings of 3 distinct items

 Generalize to n (distinct) items:

 n choices for least element, then n-1 for next, then n-2 for next, …

 n(n-1)(n-2)…(2)(1) = n! possible orderings

Describing every comparison sort

5

 A different way of thinking of sorting is that the

sorting algorithm has to “find” the right answer

among the n! possible answers

 Starts “knowing nothing”; “anything‟s possible”

 Gains information with each comparison, eliminating

some possibilities

 Intuition: At best, each comparison performed can eliminate half

of the remaining possibilities

 In the end narrows down to a single possibility

Representing the Sort Problem

6

 Can represent this sorting process as a decision tree
 Nodes are sets of “remaining possibilities”

 At root, anything is possible; no option eliminated

 Edges represent comparisons made, and the node resulting
from a comparison contains only consistent possibilities
 Ex: Say we need to know whether a<b or b<a; our root for n=2

 A comparison between a & b will lead to a node that contains only
one possibility

 Note: This tree is not a data structure, it‟s what our proof uses
to represent “the most any algorithm could know”

 Aside: Decision trees are a neat tool, sometimes used in
AI to, well, make decisions
 At each state, examine information to reduce space of

possibilities

 Classical example: „Should I play tennis today?‟; ask questions
like „Is it raining?‟, „Is it hot?‟, etc. to work towards an answer

Decision tree for n=3

7

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b a > ba ? b

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a > ca < c

b < c b > c

b < c b > c

c < a c > a

•Each leaf is one outcome

•The leaves contain all outcomes; all possible orderings

of a, b, c

Given sequence: a, b, c

(probably unordered)

What the decision tree tells us

8

 A binary tree because each comparison has 2 possible
outcomes
 Perform only comparisons between 2 elements; binary result

 Ex: Is a<b? Yes or no?

 We assume no duplicate elements

 Assume algorithm doesn‟t ask redundant questions

 Because any data is possible, any algorithm needs to ask
enough questions to produce all n! answers
 Each answer is a leaf (no more questions to ask)

 So the tree must be big enough to have n! leaves

 Running any algorithm on any input will at best correspond to
one root-to-leaf path in the decision tree

 So no algorithm can have worst-case running time better than
the height of the decision tree

Example: Sorting some data a,b,c

9

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

a ? b

possible orders

actual order

Where are we

10

 Proven: No comparison sort can have worst-case running
time better than the height of a binary tree with n! leaves

 Turns out average-case is same asymptotically

 Great! Now how tall is that…

 Show that a binary tree with n! leaves has height (n
log n)

 That is nlogn is the lower bound; the height must be at least
that

 Factorial function grows very quickly

 Then we‟ll conclude: Comparison Sorting is  (n log n)

 This is an amazing computer-science result: proves all the
clever programming in the world can‟t sort in linear time

Lower bound on height

11

 The height of a binary tree with L leaves is at least log2 L
 If we pack them in as tightly as possible, each row has about 2x the

previous row‟s nodes

 So the height of our decision tree, h:

h  log2 (n!)

= log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

= log2 n + log2 (n-1) + … + log2 1 property of logarithms

 log2 n + log2 (n-1) + … + log2 (n/2) drop smaller terms (0)

 (n/2) log2 (n/2) each of the n/2 terms left is  log2 (n/2)

= (n/2)(log2 n - log2 2) property of logarithms

= (1/2)nlog2 n – (1/2)n arithmetic

So h  (1/2)nlog2 n – (1/2)n

“=“  (n log n)

The Big Picture

12

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Change the model – assume

more than „compare(a,b)‟

Non-Comparison Sorts

13

 Say we have a list of integers between 0 & 9 (ignore
associated data for the moment)
 Size of list to sort could be huge, but we‟d have lots of duplicate

values

 Assume our data is stored in „int array[]‟; how about…

int[] counts=new int[10];

//init to counts to 0‟s

for(int i=0;i<array.length;i++) counts[array[i]]++;

 Can iterate through array in linear time

 Now return to array in sorted order; first counts[0] slots will be 0,
next counts[1] will be 1…

 We can put elements, in order, into array[] in O(n)

 This works because array assignment is sort of „comparing‟
against every element currently in counts[] in constant time
 Not merely a 2-way comparison, but an n-way comparison

 Thus not under restrictions of nlogn for Comparison Sorts

BucketSort (a.k.a. BinSort)

14

 If all values to be sorted are known to be integers

between 1 and K (or any small range)…

 Create an array of size K and put each element in its

proper bucket (a.k.a. bin)

 Output result via linear pass through array of buckets

count array

1 3

2 1

3 2

4 2

5 3

• Example:

K=5

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

If data is only integers, don’t even need to store

anything more than a count of how times that

bucket has been used

Analyzing bucket sort

15

 Overall: O(n+K)

 Linear in n, but also linear in K

 (n log n) lower bound does not apply because this is not

a comparison sort

 Good when range, K, is smaller (or not much larger)

than number of elements, n

 Don‟t spend time doing lots of comparisons of duplicates!

 Bad when K is much larger than n

 Wasted space; wasted time during final linear O(K) pass

 If K~n2, not really linear anymore

Bucket Sort with Data

16

 Most real lists aren‟t just #‟s; we have data

 Each bucket is a list (say, linked list)

 To add to a bucket, place at end in O(1) (say, keep a
pointer to last element)

count array

1

2

3

4

5

• Example: Movie ratings;

scale 1-5;1=bad, 5=excellent

Input=

5: Casablanca

3: Harry Potter movies

5: Star Wars Original

Trilogy

1: Happy Feet

Happy Feet

Harry Potter

Casablanca Star Wars

•Result: 1: Happy Feet, 3: Harry Potter, 5: Casablanca, 5: Star Wars

•This result is ‘stable’; Casablanca still before Star Wars

Radix sort

17

 Radix = “the base of a number system”
 Examples will use 10 because we are used to that

 In implementations use larger numbers
 For example, for ASCII strings, might use 128

 Idea:
 Bucket sort on one digit at a time

 Number of buckets = radix

 Starting with least significant digit, sort with Bucket Sort

 Keeping sort stable

 Do one pass per digit

 After k passes, the last k digits are sorted

 Aside: Origins go back to the 1890 U.S. census

Example

18

Radix = 10

Input: 478

537

9

721

3

38

143

67

First pass:

bucket sort by ones digit

Iterate through and collect into list

List is sorted by first digit

1

721

2 3

3

143

4 5 6 7

537

67

8

478

38

9

9

0

Order now: 721

3

143

537

67

478

38

9

Example

19

Second pass:

stable bucket sort by tens digit

If we chop off the 100‟s place,

these #‟s are sorted

Order now: 3

9

721

537

38

143

67

478

Radix = 10

Order was: 721

3

143

537

67

478

38

9

1 2

721

3

537

38

4

143

5 6

67

7

478

8 90

3

9

Example

20

Third pass:

stable bucket sort by 100s digit

Only 3 digits: We‟re done

Order now: 3

9

38

67

143

478

537

721

Radix = 10
1

143

2 3 4

478

5

537

6 7

721

8 90

3

9

38

67Order was: 3

9

721

537

38

143

67

478

Analysis

21

Performance depends on:

 Input size: n

 Number of buckets = Radix: B
 Base 10 #: 10; binary #: 2; Alpha-numeric char: 62

 Number of passes = “Digits”: P

 Ages of people: 3; Phone #: 10; Person‟s name: ?

 Work per pass is 1 bucket sort: O(B+n)
 Each pass is a Bucket Sort

 Total work is O(P(B+n))
 We do „P‟ passes, each of which is a Bucket Sort

Comparison

22

Compared to comparison sorts, sometimes a win, but

often not

 Example: Strings of English letters up to length 15

 Approximate run-time: 15*(52 + n)

 This is less than n log n only if n > 33,000

 Of course, cross-over point depends on constant factors of the

implementations plus P and B

 And radix sort can have poor locality properties

 Not really practical for many classes of keys

 Strings: Lots of buckets

Last word on sorting

23

 Simple O(n2) sorts can be fastest for small n
 selection sort, insertion sort (latter linear for mostly-sorted)

 good for “below a cut-off” to help divide-and-conquer sorts

 O(n log n) sorts
 heap sort, in-place but not stable nor parallelizable

 merge sort, not in place but stable and works as external
sort

 quick sort, in place but not stable and O(n2) in worst-case
 often fastest, but depends on costs of comparisons/copies

  (n log n) is worst-case and average lower-bound for
sorting by comparisons

 Non-comparison sorts
 Bucket sort good for small number of key values

 Radix sort uses fewer buckets and more phases

 Best way to sort? It depends

