
CSE332: Data Abstractions

Lecture 13: Comparison Sorting

Tyler Robison

Summer 2010

1

The Big Picture

2

Quite a bit to cover

We‟ll start with simple sorts

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

Selection sort

3

 Idea: At the kth step, find the smallest element among the
not-yet-sorted elements and put it at position k

 Alternate way of saying this:
 Find smallest element, put it 1st

 Find next smallest element, put it 2nd

 Find next smallest element, put it 3rd

 …

 “Loop invariant”: when loop index is i, first i elements are
the i smallest elements in sorted order

 Time?

Best-case _____ Worst-case _____ “Average” case____

Recurrence always: T(1) = O(1) and T(n) = O(n) + T(n-1)

O(n2) O(n2) O(n2)

Insertion Sort

4

 Idea: At the kth step put the kth element in the correct place
among the first k elements

 Alternate way of saying this:
 Sort first two elements

 Now insert 3rd element in order

 Now insert 4th element in order

 …

 “Loop invariant”: when loop index is i, first i elements are
sorted

 Time?

Best-case _____ Worst-case _____ “Average” case ____O(n) O(n2) O(n2)

Starts sorted Starts reverse sorted

Mystery

5

This is one implementation of which sorting algorithm (for ints)?

void mystery(int[] arr) {

for(int i = 1; i < arr.length; i++) {

int tmp = arr[i];

int j;

for(j=i; j > 0 && tmp < arr[j-1]; j--)

arr[j] = arr[j-1];

arr[j] = tmp;

}

}

Note: Like with heaps, “moving the hole” is faster than

unnecessary swapping (constant factor)

Insertion vs. Selection

6

 They are different algorithms; different ideas

 They solve the same problem

 They have the same worst-case and average-case
asymptotic complexity
 Insertion-sort has better best-case complexity; preferable

when input is “mostly sorted”

 Other algorithms are more efficient for larger arrays
that are not already almost sorted

 Small arrays may do well with Insertion sort

Aside: Why we‟re not going to cover Bubble

Sort

7

 Not really what a “normal person” would think of

 It doesn‟t have good asymptotic complexity: O(n2)

 It‟s not particularly efficient with respect to common

factors

 Basically, almost everything it is good at some other

algorithm is at least as good at

 So people seem to teach it just because someone taught

it to them

The Big Picture

8

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

A Fancier Sort: Heap sort

9

 As you saw on project 2, sorting with a heap isn‟t too
bad:
 insert each arr[i], better yet buildHeap

 for(i=0; i < arr.length; i++)

arr[i] = deleteMin();

 Worst-case running time: O(n log n)

 Why?

 We have the array-to-sort and the heap
 So this is not an „in-place‟ sort

 There‟s a trick to make it in-place…

In-place heap sort

10

 Treat the initial array as a heap (via buildHeap)

 When you delete the ith element, put it at arr[n-i]

 It‟s not part of the heap anymore!

 We know the heap won‟t grow back to that size

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –

how would you fix that?

“AVL sort”

11

 We could also use a balanced tree to:

 Insert each element: total time O(n log n)

 Repeatedly deleteMin: total time O(n log n)

 But this cannot be made in-place and has worse

constant factors than heap sort

 Heap sort is better

 Both are O(n log n) in worst, best, and average case

 Neither parallelizes well

 How about sorting with a hash table?

Divide and conquer

12

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Solve the parts independently
 Think recursion

 Or potential parallelism

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to

sort each each half, split into halves…

Other fancy sorts: Divide-and-conquer

sorting

13

Two great sorting methods are fundamentally divide-and-

conquer

1. Mergesort:

Sort the left half of the elements (recursively)

Sort the right half of the elements (recursively)

Merge the two sorted halves into a sorted whole

2. Quicksort:

Pick a “pivot” element

Divide elements into less-than pivot and greater-than pivot

Sort the two divisions (recursively on each)

Answer is „sorted-less-than‟ then „pivot‟ then „sorted-greater-than‟

Mergesort

14

 To sort array from position lo to position hi:
 If range is 1 element long, it‟s sorted! (Base case)

 Else, split into 2 halves:
 Call Mergesort on left half; when it returns, that half is sorted

 Call Mergesort on right half; when it returns, that half is sorted

 Merge the two halves together

 The Merge step takes two sorted parts and sorts
everything together
 O(n) (per merge) but requires auxiliary space…

8 2 9 4 5 3 1 6

lo hi

The Merging part

15

Start

with:

8 2 9 4 5 3 1 6

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

2 4 8 9 1 3 5 6

The Merging part

16

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

The Merging part

17

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

The Merging part

18

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

The Merging part

19

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

The Merging part

20

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

The Merging part

21

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

The Merging part

22

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

The Merging part

23

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

The Merging part

24

Start

with:

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

After merge, copy

back to

original array

1 2 3 4 5 6 8 9

After we return from left

& right recursive

calls (pretend it

works for now)

Merge:

Use 3 “fingers”

and 1 more array

Mergesort example: Recursively splitting list

in half

25

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

Mergesort example: Merge as we return from

recursive calls

26

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

When a recursive call ends, it’s sub-arrays are each in order; just

need to merge them in order together

Mergesort example: Merge as we return from

recursive calls

27

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

We need another array in which to do each merging step; merge

results into there, then copy back to original array

Some details: saving a little time

28

 What if the final steps of our merging looked like the

following:

 Seems kind of wasteful to copy 8 & 9 to the auxiliary

array just to copy them immediately back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array

Some details: saving a little time

29

 Unnecessary to copy „dregs‟ over to auxiliary array

 If left-side finishes first, just stop the merge & copy the
auxiliary array:

 If right-side finishes first, copy dregs directly into right side,
then copy auxiliary array

copy

first

second

Some details: saving space / copying

30

Simplest / worst approach:

Use a new auxiliary array of size (hi-lo) for every
merge

Returning from a recursive call? Allocate a new array!

Better:

Reuse same auxiliary array of size n for every merging
stage

Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):

Don‟t copy back – at 2nd, 4th, 6th, … merging stages, use
the original array as the auxiliary array and vice-versa
 Need one copy at end if number of stages is odd

Picture of the “best” from previous slide:

Allocate one auxiliary array, switch each step

31

First recurse down to lists of size 1

As we return from the recursion, switch off arrays

Arguably easier to code up without recursion at all

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

Linked lists and big data

32

We defined the sorting problem as over an array, but
sometimes you want to sort linked lists

One approach:

 Convert to array: O(n)

 Sort: O(n log n)

 Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly

 heapsort and quicksort do not

 insertion sort and selection sort do but they‟re slower

Mergesort is also the sort of choice for external sorting

 Linear merges minimize disk accesses

Analysis

33

Having defined an algorithm and argued it is correct,

we should analyze its running time (and space):

To sort n elements, we:

 Return immediately if n=1

 Else do 2 sub-problems of size n/2 and then an O(n)

merge

Recurrence relation:

T(1) = c1

T(n) = 2T(n/2) + c2n

MergeSort Recurrence

34

(For simplicity let constants be 1 – no effect on

asymptotic answer)

T(1) = 1, T(n) = 2T(n/2) + n ; expand inner T()

T(n) = 2(2T(n/4) + n/2) + n = 4T(n/4) + 2n

= 4(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n

….

after k expansions, T(n) = 2kT(n/2k) + kn

How many expansions until we reach the base case?

n/2k=1, so n=2k, so k=log2n

So T(n)=2log2n T(1)+nlog2n = nT(1)+nlog2n

T(n)=O(nlogn)

MergeSort Recurrence:

T(1) = c1

T(n) = 2T(n/2) + c2n

Or more intuitively…

35

This recurrence comes up frequently; good to memorize as
O(n log n)

Merge sort is relatively easy to intuit (best, worst, and
average):

 The recursion “tree” will have log n height

 At each level we do a total amount of merging equal to n

MergeSort Recurrence:

T(1) = c1

T(n) = 2T(n/2) + c2n

QuickSort

36

 Also uses divide-and-conquer

 Recursively chop into halves

 But, instead of doing all the work as we merge together, we‟ll
do all the work as we recursively split into halves

 Also unlike MergeSort, does not need auxiliary space

 O(n log n) on average , but O(n2) worst-case 

 MergeSort is always O(nlogn)

 So why use QuickSort?

 Can be faster than mergesort

 Often believed to be faster

 Does fewer copies and more comparisons, so it depends on
the relative cost of these two operations!

QuickSort overview

37

 Pick a pivot element
 Hopefully an element ~median

 Good QuickSort performance depends on good choice of
pivot; we‟ll see why later, and talk about good pivot selection
later

 Partition all the data into:
 The elements less than the pivot

 The pivot

 The elements greater than the pivot

 Ex: Say we have 8, 4, 2, 9, 3, 5, 7
 Say we pick „5‟ as the pivot

 Left half (in no particular order): 4, 2, 3

 Right half (in no particular order): 8, 9, 7

 Result of partitioning: 4, 2, 3, 5, 8, 9, 7

 That‟s great and all… but not really in order…

Think in terms of sets

38

13
81

92

43 65
31

5726

75
0S1 S2

partition S

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

[Weiss]

13
81

92

43

65

31 57

26

75
0

S select pivot value

QuickSort Recursion Tree

39

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

40

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

MergeSort

Recursion Tree

QuickSort

Recursion Tree

Details

41

We haven‟t explained:

 How to pick the pivot element

 Any choice is correct: data will end up sorted

 But as analysis will show, want the two partitions to be

about equal in size

 How to implement partitioning

 In linear time

 In place

Pivots

42

 Best pivot?

 Median

 Halve each time

 Worst pivot?

 Greatest/least element

 Reduce to problem of size 1 smaller

 O(n2)

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

Potential pivot rules

43

Say we call

Quicksort(int[] arr,int lo,int hi)

To sort arr from [lo,hi) (including lo, excluding hi)

 How about picking arr[lo]?
 Quick to pick pivot, but worst-case is (mostly) sorted input

 Same for picking arr[hi-1]

 How about picking random element in the range?
 Does as well as any technique, but (pseudo)random number generation

can be slow

 Still probably not a bad approach

 Median of 3
 Pick median of arr[lo], arr[hi-1], arr[(hi+lo)/2]

 Common heuristic that tends to work well

 Can still give us worst case though

Partitioning

44

 That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5

 Getting into left half & right half (based on pivot)

 Conceptually simple, but hardest part to code up

correctly

 After picking pivot, need to partition

 Ideally in linear time

 Ideally in place

 Ideas?

Partitioning

45

 One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]; move it „out of the way‟

2. Use two fingers i and j, starting at lo+1 and hi-1
(start & end of range, apart from pivot)

3. Move from right until we hit something less than the
pivot; belongs on left side
Move from left until we hit something greater than the
pivot; belongs on right side
Swap these two; keep moving inward
while (i < j)

if (arr[j] > pivot) j--

else if (arr[i] < pivot) i++

else swap arr[i] with arr[j]

4. Put pivot back in middle

Partitioning Example

46

 Step one: pick pivot as median of 3
 lo = 0, hi = 10

• Step two: move pivot to the lo position

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Example

47

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than

one swap during partition –

this is a short example

5 1 4 2 0 3 6 9 7 8

Analysis

48

 Best-case: Pivot is always the median: Halve each time

T(0)=T(1)=1

T(n)=2T(n/2) + n -- linear-time partition

Same recurrence as mergesort: O(n log n)

 Worst-case: Pivot is always smallest or largest element:
Reduce size by 1 each time

T(0)=T(1)=1

T(n) = 1T(n-1) + n

Basically same recurrence as selection sort: O(n2)

 Average-case (e.g., with random pivot)
 O(n log n), not responsible for proof (in text)

Cutoffs

49

 For small n, all that recursion tends to cost more than
doing a quadratic sort
 Remember asymptotic complexity is for large n

 Also, recursive calls add a lot of overhead for small n

 Common engineering technique: switch to a different
algorithm for subproblems below a cutoff
 Reasonable rule of thumb: use insertion sort for n < 10

 Notes:
 Could also use a cutoff for merge sort

 Cutoffs are also the norm with parallel algorithms
 Switch to sequential

 None of this affects asymptotic complexity

Cutoff skeleton

50

void quicksort(int[] arr, int lo, int hi) {

if(hi – lo < CUTOFF)

insertionSort(arr,lo,hi);

else

…

}

Notice how this cuts out the vast majority of the recursive calls

– Think of the recursive calls to quicksort as a tree

– Trims out the bottom layers of the tree; most nodes will

be at those bottom layers

Here the range is [lo,hi)

