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The Big Picture
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Quite a bit to cover

We‟ll start with simple sorts

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting



Selection sort
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 Idea: At the kth step, find the smallest element among the 
not-yet-sorted elements and put it at position k

 Alternate way of saying this:
 Find smallest element, put it 1st

 Find next smallest element, put it 2nd

 Find next smallest element, put it 3rd

 …

 “Loop invariant”: when loop index is i, first i elements are 
the i smallest elements in sorted order

 Time? 

Best-case  _____     Worst-case  _____   “Average” case____

Recurrence always: T(1) = O(1) and T(n) = O(n) + T(n-1)

O(n2)                              O(n2)                                 O(n2)



Insertion Sort
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 Idea: At the kth step put the kth element in the correct place 
among the first k elements

 Alternate way of saying this:
 Sort first two elements

 Now insert 3rd element in order

 Now insert 4th element in order

 …

 “Loop invariant”: when loop index is i, first i elements are 
sorted

 Time? 

Best-case  _____   Worst-case  _____    “Average” case ____O(n)                         O(n2)                              O(n2)

Starts sorted      Starts reverse sorted



Mystery

5

This is one implementation of which sorting algorithm (for ints)?

void mystery(int[] arr) {

for(int i = 1; i < arr.length; i++) {

int tmp = arr[i];

int j;

for(j=i; j > 0 && tmp < arr[j-1]; j--)

arr[j] = arr[j-1];

arr[j] = tmp;

}

}

Note: Like with heaps, “moving the hole” is faster than 

unnecessary swapping (constant factor)



Insertion vs. Selection
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 They are different algorithms; different ideas

 They solve the same problem

 They have the same worst-case and average-case 
asymptotic complexity
 Insertion-sort has better best-case complexity; preferable 

when input is “mostly sorted”

 Other algorithms are more efficient for larger arrays 
that are not already almost sorted

 Small arrays may do well with Insertion sort



Aside: Why we‟re not going to cover Bubble 

Sort
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 Not really what a “normal person” would think of

 It doesn‟t have good asymptotic complexity: O(n2)

 It‟s not particularly efficient with respect to common 

factors

 Basically, almost everything it is good at some other 

algorithm is at least as good at

 So people seem to teach it just because someone taught 

it to them



The Big Picture
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Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting



A Fancier Sort: Heap sort
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 As you saw on project 2, sorting with a heap isn‟t too 
bad:
 insert each arr[i], better yet buildHeap

 for(i=0; i < arr.length; i++)

arr[i] = deleteMin();

 Worst-case running time: O(n log n)

 Why?

 We have the array-to-sort and the heap
 So this is not an „in-place‟ sort

 There‟s a trick to make it in-place…



In-place heap sort
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 Treat the initial array as a heap (via buildHeap)

 When you delete the ith element, put it at arr[n-i]

 It‟s not part of the heap anymore!

 We know the heap won‟t grow back to that size

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=

deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –

how would you fix that?



“AVL sort”
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 We could also use a balanced tree to:

 Insert each element: total time O(n log n)

 Repeatedly deleteMin: total time O(n log n)

 But this cannot be made in-place and has worse 

constant factors than heap sort

 Heap sort is better

 Both are O(n log n) in worst, best, and average case

 Neither parallelizes well

 How about sorting with a hash table?



Divide and conquer
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Very important technique in algorithm design

1. Divide problem into smaller parts

2. Solve the parts independently
 Think recursion

 Or potential parallelism

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to 

sort each each half, split into halves…



Other fancy sorts: Divide-and-conquer 

sorting
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Two great sorting methods are fundamentally divide-and-

conquer

1. Mergesort:

Sort the left half of the elements (recursively)

Sort the right half of the elements (recursively)

Merge the two sorted halves into a sorted whole

2. Quicksort:

Pick a “pivot” element

Divide elements into less-than pivot and greater-than pivot

Sort the two divisions (recursively on each)

Answer is „sorted-less-than‟ then „pivot‟ then „sorted-greater-than‟



Mergesort
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 To sort array from position lo to position hi:
 If range is 1 element long, it‟s sorted! (Base case)

 Else, split into 2 halves: 
 Call Mergesort on left half; when it returns, that half is sorted

 Call Mergesort on right half; when it returns, that half is sorted

 Merge the two halves together

 The Merge step takes two sorted parts and sorts 
everything together
 O(n) (per merge) but requires auxiliary space…

8 2 9 4 5 3 1 6

lo hi



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array

2 4 8 9 1 3 5 6



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



The Merging part
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Start 

with: 

8 2 9 4 5 3 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

After merge, copy

back to 

original array

1 2 3 4 5 6 8 9

After we return from left 

& right recursive 

calls (pretend it 

works for now)

Merge:

Use 3 “fingers”

and 1 more array



Mergesort example: Recursively splitting list 

in half
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8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6



Mergesort example: Merge as we return from 

recursive calls
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8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

2   8

2   4   8   9

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4    9 3   5 1   6

1   3   5   6

When a recursive call ends, it’s sub-arrays are each in order; just 

need to merge them in order together



Mergesort example: Merge as we return from 

recursive calls

27

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

2   8

2   4   8   9

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4    9 3   5 1   6

1   3   5   6

We need another array in which to do each merging step; merge 

results into there, then copy back to original array



Some details: saving a little time
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 What if the final steps of our merging looked like the 

following:

 Seems kind of wasteful to copy 8 & 9 to the auxiliary 

array just to copy them immediately back…

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array



Some details: saving a little time

29

 Unnecessary to copy „dregs‟ over to auxiliary array

 If left-side finishes first, just stop the merge & copy the 
auxiliary array:

 If right-side finishes first, copy dregs directly into right side, 
then copy auxiliary array

copy

first

second



Some details: saving space / copying
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Simplest / worst approach: 

Use a new auxiliary array of size (hi-lo) for every 
merge

Returning from a recursive call?  Allocate a new array!

Better:

Reuse same auxiliary array of size n for every merging 
stage

Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):

Don‟t copy back – at 2nd, 4th, 6th, … merging stages, use 
the original array as the auxiliary array and vice-versa
 Need one copy at end if number of stages is odd



Picture of the “best” from previous slide: 

Allocate one auxiliary array, switch each step
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First recurse down to lists of size 1

As we return from the recursion, switch off arrays

Arguably easier to code up without recursion at all

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed



Linked lists and big data
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We defined the sorting problem as over an array, but 
sometimes you want to sort linked lists

One approach:

 Convert to array: O(n)

 Sort: O(n log n)

 Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly

 heapsort and quicksort do not

 insertion sort and selection sort do but they‟re slower

Mergesort is also the sort of choice for external sorting

 Linear merges minimize disk accesses



Analysis
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Having defined an algorithm and argued it is correct, 

we should analyze its running time (and space):

To sort n elements, we:

 Return immediately if n=1

 Else do 2 sub-problems of size n/2 and then an O(n) 

merge

Recurrence relation:

T(1) = c1

T(n) = 2T(n/2) + c2n



MergeSort Recurrence
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(For simplicity let constants be 1 – no effect on 

asymptotic answer)

T(1) = 1, T(n) = 2T(n/2) + n ; expand inner T()

T(n) = 2(2T(n/4) + n/2) + n = 4T(n/4) + 2n

= 4(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n

….

after k expansions, T(n) = 2kT(n/2k) + kn

How many expansions until we reach the base case?

n/2k=1, so n=2k, so k=log2n

So T(n)=2log2n T(1)+nlog2n = nT(1)+nlog2n

T(n)=O(nlogn)

MergeSort Recurrence:

T(1) = c1

T(n) = 2T(n/2) + c2n



Or more intuitively…
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This recurrence comes up frequently; good to memorize as 
O(n log n)

Merge sort is relatively easy to intuit (best, worst, and 
average):

 The recursion “tree” will have log n height

 At each level we do a total amount of merging equal to n

MergeSort Recurrence:

T(1) = c1

T(n) = 2T(n/2) + c2n



QuickSort
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 Also uses divide-and-conquer

 Recursively chop into halves

 But, instead of doing all the work as we merge together, we‟ll 
do all the work as we recursively split into halves

 Also unlike MergeSort, does not need auxiliary space

 O(n log n) on average , but O(n2) worst-case 

 MergeSort is always O(nlogn)

 So why use QuickSort?

 Can be faster than mergesort

 Often believed to be faster

 Does fewer copies and more comparisons, so it depends on 
the relative cost of these two operations!



QuickSort overview
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 Pick a pivot element
 Hopefully an element ~median

 Good QuickSort performance depends on good choice of 
pivot; we‟ll see why later, and talk about good pivot selection 
later

 Partition all the data into:
 The elements less than the pivot

 The pivot

 The elements greater than the pivot

 Ex:  Say we have 8, 4, 2, 9, 3, 5, 7
 Say we pick „5‟ as the pivot

 Left half (in no particular order): 4, 2, 3

 Right half (in no particular order): 8, 9, 7

 Result of partitioning: 4, 2, 3, 5, 8, 9, 7

 That‟s great and all… but not really in order…



Think in terms of sets
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13
81

92

43 65
31

5726

75
0S1 S2

partition S

13 4331 57260

S1
81 927565

S2

QuickSort(S1) and

QuickSort(S2)

13 4331 57260 65 81 9275S Presto!  S is sorted

[Weiss]

13
81

92

43

65

31 57

26

75
0

S select pivot value



QuickSort Recursion Tree
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2  4   3   1 8   9   6

2   1 94 6

2

1 2

1   2   3 4

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6   8 9
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2  4   3   1 8   9   6

2   1 94 6

2

1 2

1   2   3 4

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6   8 9

MergeSort

Recursion Tree

QuickSort

Recursion Tree



Details
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We haven‟t explained:

 How to pick the pivot element

 Any choice is correct: data will end up sorted

 But as analysis will show, want the two partitions to be 

about equal in size

 How to implement partitioning

 In linear time

 In place



Pivots
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 Best pivot?

 Median

 Halve each time

 Worst pivot?

 Greatest/least element

 Reduce to problem of size 1 smaller

 O(n2)

2  4   3   1 8   9   6

2   1 94 6

2

1 2

1   2   3 4

1   2   3   4   5 6   8   9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6   8 9



Potential pivot rules
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Say we call

Quicksort(int[] arr,int lo,int hi)

To sort arr from [lo,hi) (including lo, excluding hi)

 How about picking arr[lo]?
 Quick to pick pivot, but worst-case is (mostly) sorted input

 Same for picking arr[hi-1]

 How about picking random element in the range?
 Does as well as any technique, but (pseudo)random number generation 

can be slow

 Still probably not a bad approach

 Median of 3
 Pick median of arr[lo], arr[hi-1], arr[(hi+lo)/2]

 Common heuristic that tends to work well

 Can still give us worst case though



Partitioning
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 That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5

 Getting into left half & right half (based on pivot)

 Conceptually simple, but hardest part to code up 

correctly

 After picking pivot, need to partition

 Ideally in linear time

 Ideally in place

 Ideas?



Partitioning
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 One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]; move it „out of the way‟

2. Use two fingers i and j, starting at lo+1 and hi-1 
(start & end of range, apart from pivot)

3. Move from right until we hit something less than the 
pivot; belongs on left side
Move from left until we hit something greater than the 
pivot; belongs on right side 
Swap these two; keep moving inward
while (i < j)

if (arr[j] > pivot) j--

else if (arr[i] < pivot) i++

else swap arr[i] with arr[j]

4. Put pivot back in middle



Partitioning Example
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 Step one: pick pivot as median of 3
 lo = 0, hi = 10

• Step two: move pivot to the lo position

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9



Example
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Now partition in place

Move fingers

Swap

Move fingers

Move pivot

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than 

one swap during partition –

this is a short example

5 1 4 2 0 3 6 9 7 8



Analysis
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 Best-case: Pivot is always the median: Halve each time

T(0)=T(1)=1

T(n)=2T(n/2) + n -- linear-time partition

Same recurrence as mergesort: O(n log n)

 Worst-case: Pivot is always smallest or largest element: 
Reduce size by 1 each time

T(0)=T(1)=1

T(n) = 1T(n-1)  + n

Basically same recurrence as selection sort: O(n2)

 Average-case (e.g., with random pivot)
 O(n log n), not responsible for proof (in text)



Cutoffs
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 For small n, all that recursion tends to cost more than 
doing a quadratic sort
 Remember asymptotic complexity is for large n

 Also, recursive calls add a lot of overhead for small n

 Common engineering technique: switch to a different 
algorithm for subproblems below a cutoff
 Reasonable rule of thumb: use insertion sort for n < 10

 Notes:
 Could also use a cutoff for merge sort

 Cutoffs are also the norm with parallel algorithms 
 Switch to sequential

 None of this affects asymptotic complexity



Cutoff skeleton
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void quicksort(int[] arr, int lo, int hi) {

if(hi – lo < CUTOFF)

insertionSort(arr,lo,hi);

else

…

}

Notice how this cuts out the vast majority of the recursive calls 

– Think of the recursive calls to quicksort as a tree

– Trims out the bottom layers of the tree; most nodes will 

be at those bottom layers

Here the range is [lo,hi)


