CSE332: Data Abstractions
Lecture 12: Introduction to Sorting

Tyler Robison
Summer 2010

Introduction to sorting

» Stacks, queues, priority queues, and dictionaries all focused
on providing one element at a time

» But often we know we want “all the data items” in some order
Anyone can sort, but a computer can sort faster

Very common to need data sorted somehow
Alphabetical list of people
Population list of countries
Search engine results by relevance

» Different algorithms have different asymptotic and constant-
factor trade-offs

No single ‘best’ sort for all scenarios
Knowing one way to sort just isn’t enough

More reasons to sort

General technique in computing:
Preprocess data to make subsequent operations faster
» Example: Sort the data so that you can
Find the k! largest in constant time for any k
Perform binary search to find an element in logarithmic time

Whether the performance of the preprocessing matters
depends on
Ways in which you’ll access it later
How often the data will change
How much data there is

The main problem, stated carefully

For now we will assume we have n comparable elements in an array
and we want to rearrange them to be in increasing order

Input:
An array A of data records
A key value in each data record

A comparison function (consistent and total):
Given keys a & b, what is their relative ordering? <, =, >?

Ex: keys that implement Comparable or have a Comparator that can handle
them

Effect:

Reorganize the elements of A such that for any i and 3,
ifi < jthenA[i] < A[J]

Usually unspoken assumption: A must have all the same data it started
with
Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

4

Variations on the basic problem

1. Maybe elements are in a linked list (could convert to array and back
in linear time, but some algorithms needn’t do so)

2. Maybe in the case of ties we should preserve the original ordering
Sorts that do this naturally are called

One way to sort twice, Ex: Sort movies by year, then for ties,
alphabetically

3. Maybe we must not use more than O(1) “auxiliary space”
Sorts meeting this requirement are called ‘in-place’ sorts

Not allowed to allocate extra array (at least not with size O(n)), but can
allocate O(1) # of variables

All work done by swapping around in the array

4. Maybe we can do more with elements than just compare two at a time
Comparison sorts assume we work using a binary ‘compare’ operator
In special cases we can sometimes get faster algorithms

5. Maybe we have too much data to fit in memory
Use an“ " algorithm

The Big Picture

Simple Fancier Comparison
algorithms: algorithms: lower bound:
O(n?) O(n log n) Q(n log n)

|

Insertion sort Heap sort
Selection sort Merge sort
Shell sort Quick sort (avg)

Specialized
algorithms:
O(n)

Bucket sort
Radix sort

Handling
huge data
sets

External
sorting

