
CSE332: Data Abstractions

Lecture 12: Introduction to Sorting

Tyler Robison

Summer 2010

1

Introduction to sorting

2

 Stacks, queues, priority queues, and dictionaries all focused
on providing one element at a time

 But often we know we want “all the data items” in some order

 Anyone can sort, but a computer can sort faster

 Very common to need data sorted somehow

 Alphabetical list of people

 Population list of countries

 Search engine results by relevance

 …

 Different algorithms have different asymptotic and constant-
factor trade-offs

 No single „best‟ sort for all scenarios

 Knowing one way to sort just isn‟t enough

More reasons to sort

3

General technique in computing:

Preprocess data to make subsequent operations faster

 Example: Sort the data so that you can

 Find the kth largest in constant time for any k

 Perform binary search to find an element in logarithmic time

Whether the performance of the preprocessing matters

depends on

 Ways in which you‟ll access it later

 How often the data will change

 How much data there is

The main problem, stated carefully

4

For now we will assume we have n comparable elements in an array
and we want to rearrange them to be in increasing order

Input:
 An array A of data records

 A key value in each data record

 A comparison function (consistent and total):
 Given keys a & b, what is their relative ordering? <, =, >?

 Ex: keys that implement Comparable or have a Comparator that can handle
them

Effect:
 Reorganize the elements of A such that for any i and j,

if i < j then A[i] A[j]

 Usually unspoken assumption: A must have all the same data it started
with

 Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Variations on the basic problem

5

1. Maybe elements are in a linked list (could convert to array and back
in linear time, but some algorithms needn‟t do so)

2. Maybe in the case of ties we should preserve the original ordering
 Sorts that do this naturally are called stable sorts

 One way to sort twice, Ex: Sort movies by year, then for ties,
alphabetically

3. Maybe we must not use more than O(1) “auxiliary space”
 Sorts meeting this requirement are called „in-place‟ sorts

 Not allowed to allocate extra array (at least not with size O(n)), but can
allocate O(1) # of variables

 All work done by swapping around in the array

4. Maybe we can do more with elements than just compare two at a time
 Comparison sorts assume we work using a binary „compare‟ operator

 In special cases we can sometimes get faster algorithms

5. Maybe we have too much data to fit in memory
 Use an “external sorting” algorithm

The Big Picture

6

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

