
CSE332: Data Abstractions

Lecture 12: Introduction to Sorting

Tyler Robison

Summer 2010

1

Introduction to sorting

2

 Stacks, queues, priority queues, and dictionaries all focused
on providing one element at a time

 But often we know we want “all the data items” in some order

 Anyone can sort, but a computer can sort faster

 Very common to need data sorted somehow

 Alphabetical list of people

 Population list of countries

 Search engine results by relevance

 …

 Different algorithms have different asymptotic and constant-
factor trade-offs

 No single „best‟ sort for all scenarios

 Knowing one way to sort just isn‟t enough

More reasons to sort

3

General technique in computing:

Preprocess data to make subsequent operations faster

 Example: Sort the data so that you can

 Find the kth largest in constant time for any k

 Perform binary search to find an element in logarithmic time

Whether the performance of the preprocessing matters

depends on

 Ways in which you‟ll access it later

 How often the data will change

 How much data there is

The main problem, stated carefully

4

For now we will assume we have n comparable elements in an array
and we want to rearrange them to be in increasing order

Input:
 An array A of data records

 A key value in each data record

 A comparison function (consistent and total):
 Given keys a & b, what is their relative ordering? <, =, >?

 Ex: keys that implement Comparable or have a Comparator that can handle
them

Effect:
 Reorganize the elements of A such that for any i and j,

if i < j then A[i]  A[j]

 Usually unspoken assumption: A must have all the same data it started
with

 Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Variations on the basic problem

5

1. Maybe elements are in a linked list (could convert to array and back
in linear time, but some algorithms needn‟t do so)

2. Maybe in the case of ties we should preserve the original ordering
 Sorts that do this naturally are called stable sorts

 One way to sort twice, Ex: Sort movies by year, then for ties,
alphabetically

3. Maybe we must not use more than O(1) “auxiliary space”
 Sorts meeting this requirement are called „in-place‟ sorts

 Not allowed to allocate extra array (at least not with size O(n)), but can
allocate O(1) # of variables

 All work done by swapping around in the array

4. Maybe we can do more with elements than just compare two at a time
 Comparison sorts assume we work using a binary „compare‟ operator

 In special cases we can sometimes get faster algorithms

5. Maybe we have too much data to fit in memory
 Use an “external sorting” algorithm

The Big Picture

6

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

