
CSE332: Data Abstractions

Lecture 11: Hash Tables

Tyler Robison

Summer 2010

1

Hash Table: Another dictionary

2

 Aim for constant-time (i.e., O(1)) find, insert, and delete

 “On average” under some reasonable assumptions

 A hash table is an array of some fixed size

 Define a mapping from each key to a location in table

 Basic idea: 0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

Hash tables

3

 There are m possible keys (m typically large, even

infinite) but we expect our table to have only n items

where n is much less than m (often written n << m)

Many dictionaries have this property

 Compiler: All possible identifiers allowed by the language

vs. those used in some file of one program

 Database: All possible student names vs. students enrolled

 AI: All possible chess-board configurations vs. those

considered by the current player

Hash functions

4

Hash function: Our key to index mapping

An ideal hash function:

 Is fast to compute

 “Rarely” hashes two “used” keys to the same index
 Often impossible in theory; easy in practice

 Will handle collisions a bit later

0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

Who hashes what?

5

 Hash tables can be generic
 To store elements of type E, we just need E to be:

1. Comparable: order any two E (like with all dictionaries)

2. Hashable: convert any E to an int

 When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles:

• We will learn both roles, but most programmers “in the real world”

spend more time on the client side, while still having an

understanding of the library

E int table-index
collision? collision

resolution

client hash table library

More on roles

6

Two roles must both contribute to minimizing collisions

• Client should aim for different ints for expected items

– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices

– conversion to index is almost always “mod table-size”

– using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?

What to hash?

7

In lecture we will consider the two most common

things to hash: integers and strings

 If you have objects with several fields, it is usually best

to have most of the “identifying fields” contribute to

the hash to avoid collisions

 Example:
class Person {

String first; String middle; String
last;

int age;
}

Hashing integers

8

 key space = integers
 Useful for examples

 Simple hash function:
h(key) = key % TableSize

 Client: f(x) = x

 Library g(x) = x % TableSize

 Fairly fast and natural

 Example:
 TableSize = 10

 Insert 7, 18, 41, 34, 10

 (As usual, ignoring data “along for the
ride”)

 What could go wrong?
 Now insert 20….

0

1

2

3

4

5

6

7

8

9

10

41

34

7

18

Collision-avoidance

9

 Collision: Two keys map to the same index

 With “x % TableSize” the number of collisions depends
on
 the ints inserted

 TableSize

 Larger table-size tends to help, but not always
 Example: Insert 12, 22, 32 with TableSize = 10 vs.

TableSize = 6

 Technique: Pick table size to be prime. Why?
 Real-life data tends to have a pattern, and “multiples of 61” are

probably less likely than “multiples of 60”

 Later we‟ll see that one collision-handling strategy does
provably better with prime table size

 Usually use something like 10 for examples though

0 12

1

2 32

3

4 22

5

More arguments for a prime table size

10

If TableSize is 60 and…
 Lots of data items are multiples of 5, wasting 80% of table

 Lots of data items are multiples of 10, wasting 90% of table

 Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61…
 Collisions can still happen, but 5, 10, 15, 20, … will fill table

 Collisions can still happen but 10, 20, 30, 40, … will fill table

 Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then

(a * x) % y == (b * x) % y if and only if a % y == b % y
 So, given table size y and keys as multiples of x, we‟ll get a decent

distribution if x & y are co-prime

 Good to have a TableSize that has not common factors with any
“likely pattern” x

What if we don’t have ints as keys?

11

 If keys aren‟t ints, the client must convert to an int
 Trade-off: speed and distinct keys hashing to distinct ints

 Very important example: Strings
 Key space K = s0s1s2…sm-1

 Where si are chars: si [0,51] or si [0,255] or si [0,216-1]

 Some choices: Which avoid collisions best?

1. h(K) = s0 % TableSize

2. h(K) = % TableSize

3. h(K) = % TableSize

What causes collisions for each?

1

0

m

i

i

s

1

0

37
k

i

i

is

Anything w/ same

first letter

Any rearrangement

of letters

Hmm… not so clear

Java-esque String Hash

12

 Java characters in Unicode format; 216 bits

 Can compute efficiently via a trick called Horner‟s

Rule:

 Idea: Avoid expensive computation of 31k

 Say n=4

 h=((s[0]*31+s[1])*31+s[2])*31+s[3]

Specializing hash functions

13

How might you hash differently if all your strings were

web addresses (URLs)?

Combining hash functions

14

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. When smashing two hashes into one hash, use bitwise-
xor

 Problem with Bitwise AND?

 Produces too many 0 bits

 Problem with Bitwise OR?

 Produces too many 1 bits

3. Rely on expertise of others; consult books and other
resources

4. If keys are known ahead of time, choose a perfect hash

Additional operations

15

 How would we do the following in a hashtable?

 findMin()

 findMax()

 predecessor(key)

 Hashtables really not set up for these; need to

search everything, O(n) time

 Could try a hack:

 Separately store max & min values; update on insert &

delete

 What about „2nd to max value‟, predecessor, in-order

traversal, etc; those are fast in an AVL tree

Hash Tables: A Different ADT?

16

 In terms of a Dictionary ADT for just insert, find,

delete, hash tables and balanced trees are just

different data structures

 Hash tables O(1) on average (assuming few collisions)

 Balanced trees O(log n) worst-case

 Constant-time is better, right?

 Yes, but you need “hashing to behave” (collisions)

 Yes, but findMin, findMax, predecessor, and

successor go from O(log n) to O(n)

 Why your textbook considers this to be a different ADT

 Not so important to argue over the definitions

Collision resolution

17

Collision:

When two keys map to the same location in the hash

table

We try to avoid it, but number-of-keys exceeds table

size

So we can resolve collisions in a couple of different

ways:

 Separate chaining

 Open addressing

Separate Chaining

18

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

19

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /
Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

20

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

21

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

22

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

23

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Why put them at the front?

Handling duplicates?

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

Thoughts on chaining

24

 Worst-case time for find?
 Linear

 But only with really bad luck or bad hash function

 So not worth avoiding (e.g., with balanced trees at each
bucket)
 Keep # of items in each bucket small

 Overhead of AVL tree, etc. not worth it for small n

 Beyond asymptotic complexity, some “data-structure
engineering” may be warranted
 Linked list vs. array or a hybrid of the two

 Move-to-front (part of Project 2)

 Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case
 A time-space trade-off…

Time vs. space (constant factors only here)

25

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /

A more rigorous chaining analysis

26

Definition: The load factor, , of a hash table is

N

TableSize

N=number of elements

Under separate chaining, the average number of elements per

bucket is…?

So if some inserts are followed by random finds, then on

average:

• Each unsuccessful find compares against ____ items

• Each successful find compares against _____ items

• If is low, find & insert likely to be O(1)

• We like to keep around 1 for separate chaining

/2

Separate Chaining Deletion

27

 Not too bad

 Find in table

 Delete from bucket

 Say, delete 12

 Similar run-time as insert

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

An Alternative to Separate Chaining: Open

Addressing

28

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /

An Alternative to Separate Chaining: Open

Addressing

29

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining: Open

Addressing

30

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining: Open

Addressing

31

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining: Open

Addressing

32

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

Open addressing: Storing in the table

33

 This is one example of open addressing

 More generally, we just need to describe where to check next
when one attempt fails (cell already in use)

 Each version of open addressing involves specifying a
sequence of indices to try

 Trying the next spot is called probing

 In the above example, our ith probe was (h(key) + i) %
TableSize

 To get the next index to try, we just added 1 (mod the Tablesize)

 This is called linear probing

 More generally we have some probe function f and use

(h(key) + f(i)) % TableSize

for the ith probe (start at i=0)

 For linear probing, f(i)=i

More about Open Addressing

34

 Find works similarly:
 Keep probing until we find it

 Or, if we hit null, we know it‟s not in the table

 How does open addressing work with high
load factor ()
 Poorly

 Too many probes means no more O(1)

 So want larger tables

 Find with =1?

 Deletion? How about we just remove it?
 Take previous example, delete 38

 Then do a find on 8

 Hmm… this isn‟t going to work

 Stick with lazy deletion

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

Terminology

35

We and the book use the terms

 “chaining” or “separate chaining”: Linked list in each

bucket

vs.

 “open addressing”: Store directly in table

Very confusingly,

 “open hashing” is a synonym for “chaining”

vs.

 “closed hashing” is a synonym for “open addressing”

Primary Clustering

36

It turns out linear probing is a bad idea, even though the

probe function is quick to compute (a good thing)

[R. Sedgewick]

Tends to produce

clusters, which lead

to long probing

sequences

Saw this happening in

earlier example

• Called primary

clustering

Analysis of Linear Probing

37

 Trivial fact: For any < 1, linear probing will find an empty
slot
 It is “safe” in this sense: no infinite loop unless table is full

 Non-trivial facts we won‟t prove:

Average # of probes given (limit as TableSize →)
 Unsuccessful search:

 Successful search:

 This is pretty bad: need to leave sufficient empty space in
the table to get decent performance

2
1

1
1

2

1

1

1
1

2

1

In a chart

38

 Linear-probing performance degrades rapidly as table gets full
 (Formula assumes “large table”)

 By comparison, chaining performance is linear in and has no
trouble with >1

Open Addressing: Quadratic probing

39

 We can avoid primary clustering by changing the
probe function

 A common technique is quadratic probing:
 f(i) = i2

 So probe sequence is:
 0th probe: h(key) % TableSize

 1st probe: (h(key) + 1) % TableSize

 2nd probe: (h(key) + 4) % TableSize

 3rd probe: (h(key) + 9) % TableSize

 …

 ith probe: (h(key) + i2) % TableSize

 Intuition: Probes quickly “leave the neighborhood”

Quadratic Probing Example

40

0

1

2

3

4

5

6

7

8

9

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

41

0

1

2

3

4

5

6

7

8

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

42

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

43

0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

44

0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

45

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

How about 98?

Another Quadratic Probing Example

46

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6

Another Quadratic Probing Example

47

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6 76

Another Quadratic Probing Example

48

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

49

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

50

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76

Another Quadratic Probing Example

51

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Another Quadratic Probing Example

52

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Uh-oh: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

•Proof uses induction and (n2+5) % 7 = ((n-7)2+5) % 7

• In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k

From bad news to good news

53

 For all c and k, (n2+c) % k = ((n-k)2+c) % k

 The bad news is: After TableSize quadratic probes, we will

just cycle through the same indices

 The good news:

 Assertion #1: If T = TableSize is prime and < ½, then

quadratic probing will find an empty slot in at most T/2 probes

 Assertion #2: For prime T and 0 i,j T/2 where i j,

(h(key) + i2) % T (h(key) + j2) % T

That is, if T is prime, the first T/2 quadratic probes map

to different locations

 Assertion #3: Assertion #2 is the “key fact” for proving

Assertion #1

 So: If you keep < ½, no need to detect cycles

Clustering reconsidered

54

 Quadratic probing does not suffer from primary
clustering: quadratic nature quickly escapes the
neighborhood

 But it‟s no help if keys initially hash to the same
index
 Called secondary clustering

 Any 2 keys that hash to the same value will have the
same series of moves after that

 Can avoid secondary clustering with a probe function
that depends on the key: double hashing

Open Addressing: Double hashing

55

 Idea:
 Given two good hash functions h and g & 2 different keys k1 & k2, it

is very unlikely that h(k1)==h(k2) & g(k1)==g(k2)

 So make the probe function f(i) = i*g(key)

 That is, check h(key), then h(key)+g(key), then h(key)+2*g(key), …

 Even if h(key1)=h(key2), they‟ll most likely go different places for the
next probe

 Probe sequence:
 0th probe: h(key) % TableSize

 1st probe: (h(key) + g(key)) % TableSize

 2nd probe: (h(key) + 2*g(key)) % TableSize

 3rd probe: (h(key) + 3*g(key)) % TableSize

 …

 ith probe: (h(key) + i*g(key)) % TableSize

 Detail: Make sure g(key) isn’t 0

 Why?

 Also, shouldn’t be a multiple of TableSize

Double-hashing analysis

56

 Intuition: Since each probe is “jumping” by g(key) each
time, we “leave the neighborhood” and “go different
places from other initial collisions”
 Say h(x)==h(y); it‟s unlikely that g(x)==g(y)

 But we could still have a problem like in quadratic probing
where we are not “safe” (infinite loop despite room in
table)
 No guarantee that i*g(key) will let us try all/most indices

 It is known that this infinite loop, despite space available,
cannot happen in at least one case:
 h(key) = key % p

 g(key) = q – (key % q)

 2 < q < p

 p and q are prime

Yet another reason to use a prime Tablesize

57

 So, for double hashing

ith probe: (h(key) + i*g(key))% TableSize

 Say g(key) divides Tablesize
 That is, there is some integer x such that x*g(key)=Tablesize

 After x probes, we‟ll be back to trying the same indices as
before

 Ex:
 Tablesize=50

 g(key)=25

 Probing sequence:
 h(key)

 h(key)+25

 h(key)+50=h(key)

 h(key)+75=h(key)+25

 Only 1 & itself divide a prime

More double-hashing facts

58

 Assume “uniform hashing”
 Means probability of g(key1) % p == g(key2) % p is
1/p

 Non-trivial facts we won‟t prove:

Average # of probes given (in the limit as
TableSize →)
 Unsuccessful search (intuitive):

 Successful search (less intuitive):

 Bottom line: unsuccessful bad (but not as bad as
linear probing), but successful is not nearly as bad

1

1

1 1
log

1
e

Charts: Double hashing (w/ uniform

hashing) vs. Linear probing

59

We’ve explored different methods of collision

detection

60

 Chaining is easy

 find, delete proportion to load factor on average; insert

constant

 Open addressing uses probe functions, has clustering issues as

table gets full

 Why use it:

 Less memory allocation

 Some run-time overhead for allocating linked list (or whatever)

nodes; open addressing could be faster

 Arguably easier data representation

 Now:

 Growing the table when it gets too full: Called „rehashing‟

 Relation between hashing/comparing and connection to Java

Rehashing

61

 Like with array-based stacks/queues/lists, if table gets
too full, create a bigger table and copy everything over

 With chaining, we get to decide what “too full” means
 Keep load factor reasonable (e.g., < 1)?

 Consider average or max size of non-empty chains?

 For open addressing, half-full is a good rule of thumb

 New table size
 Twice-as-big is a good idea, except…

 That won‟t be prime!

 So go about twice-as-big

 Can have a list of prime numbers in your code since you
won‟t grow more than 20-30 times

 If you do need more primes, not too bad to calculate

More on rehashing

62

 What if we copy all data to the same indices in the new
table?

 Not going to work; calculated index based on TableSize – we
may not be able to find it later

 Go through current table, do standard insert for each into
new table; run-time?

 O(n): Iterate through table

 But resize is an O(n) operation, involving n calls to the
hash function (1 for each insert in the new table)

 Is there some way to avoid all those hash function calls again?

 Space/time tradeoff: Could store h(key) with each data item,
but since rehashing is rare, this is probably a poor use of space

 And growing the table is still O(n); only helps by a constant factor

Hashing and comparing

63

 For insert/find, as we go through the chain or keep probing, we
have to compare each item we see to the key we‟re looking for
 We need to have a comparator (or key‟s type needs to be

comparable)

 Don‟t actually need < & >; just =

 So a hash table needs a hash function and a comparator
 In Project 2, you‟ll use two function objects

 The Java standard library uses a more OO approach where each
object has an equals method and a hashCode method:

class Object {

boolean equals(Object o) {…}

int hashCode() {…}

…

}

Equal objects must hash the same

64

 The Java library (and your project hash table) make a

very important assumption that clients must satisfy…

 OO way of saying it:

If a.equals(b), then we must require

a.hashCode()==b.hashCode()

 Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

 What would happen if we didn’t do this?

Java bottom line

65

 Lots of Java libraries use hash tables, perhaps

without your knowledge

 So: If you ever override equals, you need to

override hashCode also in a consistent way

(Incorrect) Example

66

 Think about using a hash table holding points
class PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle(double theta2) { theta+=theta2; }
…
boolean equals(Object otherObject) {

if(this==otherObject) return true;
if(otherObject==null) return false;
if(getClass()!=other.getClass()) return false;
PolarPoint other = (PolarPoint)otherObject;
double angleDiff =

(theta – other.theta) % (2*Math.PI);
double rDiff = r – other.r;
return Math.abs(angleDiff) < 0.0001

&& Math.abs(rDiff) < 0.0001;
}
// wrong: must override hashCode!

}

Aside: Comparable/Comparator have rules

too

67

Comparison must impose a consistent, total ordering:

For all a, b, and c,

 If compare(a,b) < 0, then compare(b,a) > 0

 If compare(a,b) == 0, then compare(b,a) == 0

 If compare(a,b) < 0 and compare(b,c) < 0,

then compare(a,c) < 0

What would happen if compareTo() just randomly

returned -1, 0 or 1?

Final word on hashing

68

 The hash table is one of the most important data structures
 Supports only find, insert, and delete efficiently

 FindMin, FindMax, predecessor, etc.: not so efficiently

 Most likely data-structure to be asked about in interviews; many
real-world applications

 Important to use a good hash function
 Good distribution

 Uses enough of key‟s values

 Important to keep hash table at a good size
 Prime #

 Preferable depends on type of table

 Side-comment: hash functions have uses beyond hash tables
 Examples: Cryptography, check-sums

