CSE332: Data Abstractions
Lecture 11: Hash Tables

Tyler Robison
Summer 2010

Hash Table: Another dictionary

» Aim for constant-time (i.e., O(1)) £ind, insert, and delete
“On average” under some reasonable
» A hash table is an array of some fixed size
» Define a mapping from each key to a location in table hash table
» Basic idea: 0

hash function:
Index = h(key)
>

key space (e.g., integers, strings)

TableSize -1

Hash tables

» There are m possible keys (m typically large, even
Infinite) but we expect our table to have only n items
where n is much less than m (often written n << m)

Many dictionaries have this property

Compiler: All possible identifiers allowed by the language
vs. those used in some file of one program

Database: All possible student names vs. students enrolled

Al: All possible chess-board configurations vs. those
considered by the current player

Hash functions

Hash function: Our key to index mapping

An ideal hash function:
» Is fast to compute hash table

» “Rarely” hashes two “used” keys to the same indeX
Often impossible in theory; easy in practice
Will handle collisions a bit later

hash function:
Index = h(key)
>

key space (e.g., integers, strings) TableSize -1

4

Who hashes what?

» Hash tables can be generic
To store elements of type E, we just need E to be:
Comparable: order any two E (like with all dictionaries)
Hashable: convert any E to an int

» When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles:

client hash table library

collision? +ollision

E mmees) jnt mmssss) table-index mm—) resolution

 We will learn both roles, but most programmers “in the real world”
spend more time on the client side, while still having an
understanding of the library

More on roles

Some ambiguity in terminology on which parts are “hashing”
client hash table library

collision? collision
resolution

E mmees) |nt mmmsss) table-index
\—'—’
_'_l

“hashing”? “hashing™

Two roles must both contribute to minimizing collisions

« Client should aim for different ints for expected items
— Avoid “wasting” any part of E or the 32 bits of the int

« Library should aim for putting “similar” ints in different indices
— conversion to index is almost always “mod table-size”
— using prime numbers for table-size is common

What to hash?

In lecture we will consider the two most common
things to hash: integers and strings

If you have objects with several fields, it is usually best
to have most of the “identifying fields” contribute to
the hash to avoid collisions

Example:

class Person { _ _ _
String first; String middle; String
last;
int age;
}

Hashing integers

» key space = integers
Useful for examples

» Simple hash function:
h (key) = key % TableSize
Client: £(x) = x
Library g(x) = x % TableSize
Fairly fast and natural

» Example:
TableSize = 10
Insert 7, 18, 41, 34, 10

(As usual, ignoring data “along for the
ride”)

What could go wrong?
Now insert 20....

© 00 N O 01 b WO N - O

10

41

34

18

Collision-avoidance

» Collision: Two keys map to the same index
» With “x $ TableSize” the number of collisions depends

on
the ints inserted 0 12
TableSize 1
» Larger table-size tends to help, but not always 2 32
Example: Insert 12, 22, 32 with TableSize = 10 vs. 3
TableSize =06
a eslze 4 22
» Technique: Pick table size to be prime. Why? 5

Real-life data tends to have a pattern, and “multiples of 61” are
probably less likely than “multiples of 60”

Later we’ll see that one collision-handling strategy does
provably better with prime table size

Usually use something like 10 for examples though

More arguments for a prime table size

If TableSize is 60 and...
Lots of data items are multiples of 5, wasting 80% of table
Lots of data items are multiples of 10, wasting 90% of table
Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61...
Collisions can still happen, but 5, 10, 15, 20, ... will fill table
Collisions can still happen but 10, 20, 30, 40, ... will fill table
Collisions can still happen but 2, 4, 6, 8, ... will fill table

In general, if x and y are “co-prime” (means ged (x,y) ==1), then
(a * x) $y== (b * x) %$yifandonlyifa $ y == $y

So, given table size y and keys as multiples of x, we’ll get a decent
distribution if X & y are co-prime

Good to have a TableSize that has not common factors with any
“likely pattern” x

10

What if we don’t have ints as keys?

» If keys aren’t ints, the client must convert to an int
Trade-off: speed and distinct keys hashing to distinct ints

» Very important example: Strings
Key space K = 5;S;S5...S.1
Where s; are chars: s, € [0,51] or s; € [0,255] or s; € [0,21°-1]
Some choices: Which avoid collisions best?

h(K) = sy % TableSize Anything w/ same
first letter
m-—1
h(K) = [Z Si j % TableSize Any rearrangement
1=0 of letters

h(K) = Z S 37' % TableSize Hmm... not so clear

What causes coII|S|ons for each?
11

Java-esque String Hash

» Java characters in Unicode format; 21° bits

h = s[0] 31" ' 4+s[1] *31™" % +.-- +8[n-1]
» Can compute efficiently via a trick called Horner’s
Rule:
ldea: Avoid expensive computation of 31k
Say n=4
h=((s[0]*31+s[1])*31+s[2])*31+S[3]

12

Specializing hash functions

How might you hash differently if all your strings were
web addresses (URLS)?

13

Combining hash functions

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. When smashing two hashes into one hash, use bitwise-
XOr

Problem with Bitwise AND?
Produces too many 0 bits

Problem with Bitwise OR?
Produces too many 1 bits

3. Rely on expertise of others; consult books and other
resources

4. If keys are known ahead of time, choose a perfect hash

14

Additional operations

» How would we do the following in a hashtable?
findMin()
findMax()
predecessor(key)
» Hashtables really not set up for these; need to
search everything, O(n) time
» Could try a hack:

Separately store max & min values; update on insert &
delete

What about ‘2" to max value’, predecessor, in-order
traversal, etc; those are fast in an AVL tree

15

Hash Tables: A Different ADT?

» In terms of a Dictionary ADT for just insert, £ind,
delete, hash tables and balanced trees are just
different data structures

Hash tables O(1) on average (assuming few collisions)
Balanced trees O(log n) worst-case

» Constant-time Is better, right?

Yes, but you need “hashing to behave” (collisions)

Yes, but £findMin, findMax, predecessor, and
successor go from O(log n) to O(n)

Why your textbook considers this to be a different ADT
Not so important to argue over the definitions

16

Collision resolution

Collision:

When two keys map to the same location in the hash
table

We try to avoid it, but number-of-keys exceeds table
size

So we can resolve collisions in a couple of different
ways:
Separate chaining
Open addressing

17

Separate Chaining

Chaining: All keys that map to the
same table location are kept in
alist (a.k.a.a “chain” or
“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,
42 with mod hashing and
TableSize = 10

© 00 N O 01 b WO N - O
~N | V|~~~V NN~

18

Separate Chaining

Chaining: All keys that map to the
same table location are kept in
alist (a.k.a.a “chain” or
“bucket”)

A 4

10| /

As easy as it sounds

Example: insert 10, 22, 107, 12,
42 with mod hashing and
TableSize = 10

© 00 N O 01 b WO N - O
~N | V|V~~~

19

Separate Chaining

Chaining: All keys that map to the

»10| / . .
/ same table location are kept in
alist (a.k.a.a “chain” or
22|/ “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,
42 with mod hashing and
TableSize = 10

© 00 N O 01 b WO N - O
~N | V|~~~

20

Separate Chaining

Chaining: All keys that map to the
same table location are kept in
alist (a.k.a.a “chain” or

22| / “bucket”)

A 4

10| /

A 4

As easy as it sounds

NS YN S

Example: insert 10, 22, 107, 12,
107 / 42 with mod hashing and
/ TableSize = 10

A 4

© 00 N O 01 b WO N - O

21

Separate Chaining

© 00 N O 01 b WO N - O

22

A 4

10| /

NS YN S

A 4

12

Chaining: All keys that map to the
same table location are kept in
alist (a.k.a.a “chain” or

A 4

107

A 4

22| / “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

© 00 N O 01 b WO N - O

23

A 4

10| /

NS YN S

A 4

42

A 4

107

A 4

12

A 4

22

Chaining: All keys that map to the
same table location are kept in
alist (a.k.a.a “chain” or
“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,
42 with mod hashing and
TableSize = 10

Why put them at the front?
Handling duplicates?

Thoughts on chaining

» Worst-case time for £ind?
Linear
But only with really bad luck or bad hash function

So not worth avoiding (e.g., with balanced trees at each
bucket)

Keep # of items in each bucket small
Overhead of AVL tree, etc. not worth it for small n

» Beyond asymptotlc complexity, some “data-structure
engineering” may be warranted

Linked list vs. array or a hybrid of the two
Move-to-front (part of Project 2)

Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case

A time-space trade-off...

24

Time vs. space (constant factors only here)

© 00 N O 01 b WO N - O

25

A 4

10

NS YN S

A 4

42

A 4

107

A 4

12

A 4

22

© 00 N O 01 b W0 N - O

10

/

X

42

/

XX |=|X|X|X]|X

A 4

12

A 4

22

A more rigorous chaining analysis

Definition: The , A, of a hash table is
4 N N=number of elements
TableSize
Under separate chaining, the average number of elements per
bucket is...?
A
So if some inserts are followed by random finds, then on
average:

« Each unsuccessful find compares against _J_ items
 Each successful £find compares against _4/?2 items

« If Aislow, find & insert likely to be O(1)

« We like to keep A around 1 for separate chaining

Separate Chaining Deletion

» Not too bad
Find in table
Delete from bucket

» Say, delete 12
» Similar run-time as insert

27

© 0 N O O A WO N —» O

»10| /

{42

~ |~ | Y~ |

»12

»22

107

An Alternative to Separate Chaining: Open
Addressing

» Store directly in the array cell (no linked list)
» How to deal with collisions?

» If h (key) Is already full,

Try (h(key) + 1) % TableSize
» That’s full too?

Try (h(key) + 2) % TableSize
» How about

Try (h(key) + 3) % TableSize
> ..

» Example: insert 38, 19, 8, 109, 10

N e e e B e e

w
oo

© 0 N O O A WO N+ O

~~

28

An Alternative to Separate Chaining: Open
Addressing

» Store directly in the array cell (no linked list)
» How to deal with collisions?

» If h (key) Is already full,

Try (h(key) + 1) % TableSize
» That’s full too?

Try (h(key) + 2) % TableSize
» How about

Try (h(key) + 3) % TableSize
> ..

» Example: insert 38, 19, 8, 109, 10

N e e e B e e

w
oo

© 0 N O O A WO N+ O

[HEN
©

29

An Alternative to Separate Chaining: Open
Addressing

» Store directly in the array cell (no linked list)
» How to deal with collisions?

» If h (key) Is already full,

Try (h(key) + 1) % TableSize
» That’s full too?

Try (h(key) + 2) % TableSize
» How about

Try (h(key) + 3) % TableSize

~N |l SN 1IN ISl ~~|~]|~]00

w
oo

© 0 N O O A WO N+ O

[HEN
©

> ...
» Example: insert 38, 19, 8, 109, 10

30

An Alternative to Separate Chaining: Open
Addressing

» Store directly in the array cell (no linked list)
» How to deal with collisions?

109

» If h (key) Is already full,

Try (h(key) + 1) % TableSize
» That’s full too?

Try (h(key) + 2) % TableSize
» How about

Try (h(key) + 3) % TableSize
> ..

» Example: insert 38, 19, 8, 109, 10

~N | N | YN YN | Y~ |~

38
19

© 0 N O O A WO N+ O

31

An Alternative to Separate Chaining: Open

Addressing

» Store directly in the array cell (no linked list)
» How to deal with collisions? 0 | 8
1 109
» If h (key) Is already full, 2 1/0
Try (h(key) + 1) % TableSize A /
» That’s full too? 5 /
Try (h(key) + 2) % TableSize 5 /
» How about 7 /
Try (h(key) + 3) % TableSize 8 | 38
> ... 9 19

» Example: insert 38, 19, 8, 109, 10

32

Open addressing: Storing in the table

» This is one example of open addressing

More generally, we just need to describe where to check next
when one attempt fails (cell already in use)

Each version of open addressing involves specifying a
sequence of indices to try

» Trying the next spot is called

In the above example, our i probe was (h (key) + i) %
TableSize

To get the next index to try, we just added 1 (mod the Tablesize)
This is called

More generally we have some f and use
(h(key) + £(i)) % TableSize
for the i'*" probe (start at i=0)
For linear probing, f(i)=i

33

More about Open Addressing

» Find works similarly:
Keep probing until we find it
Or, if we hit null, we know it's not in the table
» How does open addressing work with high
load factor (A)
Poorly
Too many probes means no more O(1)
So want larger tables
Find with A=17
» Deletion? How about we just remove it?
Take previous example, delete 38
Then do a find on 8
Hmm... this isn’'t going to work
Stick with lazy deletion

34

© 0 N O O A WO N - O

109

~N | N | N | YN YN~

38

19

Terminology

We and the book use the terms

“chaining” or “separate chaining”: Linked list in each
bucket

VS.
“‘open addressing”. Store directly in table

Very confusingly,
“open hashing” is a synonym for “chaining”
VS.
“closed hashing” is a synonym for “open addressing”

35

Primary Clustering

It turns out linear probing is a bad idea, even though the
probe function is quick to compute (a good thing)

PRI IR
LI
Tends to produce g uuuugmmmjummuu e
i .
clusters, which lead . ummuuuwu‘ﬂ“
to | b UU&UUM@MUU eyl et
n L
L LAk
LI
w this h R L eI
Saw this happening in L u@jmuuutﬂ@mmmu
earlier example L msmeree . e
LIl
T e
LJLJLJL—JLJU LI
- uuuuumm&ﬂﬂgﬁﬁmum
e leiieel® RPN LI
L .uuuuuuuuuumwuu
L m s [R. SedgewicK]

36

Analysis of Linear Probing

» Trivial fact: For any A < 1, linear probing will find an empty
slot

It is “safe” in this sense: no infinite loop unless table is full

» Non-trivial facts we won’t prove:
Average # of probes given A (limit as TableSize —w)
Unsuccessful search: 1[1 j
1+

2\ (@-AaY
Successful search: 1 1

_ 1_|_ -

27 (1-4)

» This is pretty bad: need to leave sufficient empty space in
the table to get decent performance

37

In a chart

» Linear-probing performance degrades rapidly as table gets full
(Formula assumes “large table”)

» By comparison, chaining performance is linear in A and has no
trouble with A2>1

Average # of Probes

Linear Probing Linear Probing
16.00 » 350.00
14.00] 2 30000
12.00 / g 250.00
10.00 / Y= 200.00
8.00 . . O _ _
/ ———linear probing #* 150.00 ——linear probing
6.00 / not found Qv not found
4.00 %0 100.00
' _/ linear prohing s 50.00 / = |inear probing
2.00 found > ' ﬁ ! found
0.00 < 000
= 00w ~N OO M O M~ = — 00 = O o 00 ™~ W = M 4 -
OO A4 N ~NMS AW W~ N O = AN M S N WS O
OO0 0 COo0OCOo oo oo o OO0 000000 o oo
Load Factor Load Factor

38

Open Addressing: Quadratic probing

» We can avoid primary clustering by changing the
probe function

» A common technique is quadratic probing:
f(i) = i?
So probe sequence is:
Oth probe: h(key) % TableSize
15t probe: (h(key) + 1) % TableSize
2"d probe: (h(key) + 4) % TableSize
3'd probe: (h(key) + 9) % TableSize

i probe: (h(key) + i2) % TableSize

» Intuition: Probes quickly “leave the neighborhood”

39

Quadratic Probing Example

TableSize=10
Insert:

89

18

49

58

79

© O N O O A WO N +— O

40

Quadratic Probing

41

© O N O O A WO N +— O

89

Lxample

TableSize=10
Insert:

89

18

49

58

79

Quadratic Probing

42

© O N O O A WO N +— O

18

89

Lxample

TableSize=10
Insert:

89

18

49

58

79

Quadratic Probing

43

© O N O O A WO N +— O

49

18

89

Lxample

TableSize=10
Insert:

89

18

49

58

79

Quadratic Probing

44

© O N O O A WO N +— O

49

58

18

89

Lxample

TableSize=10
Insert:

89

18

49

58

79

Quadratic Probing .

45

© 00 N O 01 b WO N - O

49

58

79

18

89

Lxample

TableSize=10
Insert:

89

18

49

58

79

How about 98?

Another Quadratic Probing |

46

o o1 A WO N L O

TableSize =7

Insert:
76

40

48

5

55

47

xample

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing |

47

o o1 A WO N L O

76

TableSize =7

Insert:
76

40

48

5

55

47

xample

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing |

48

o o1 A WO N L O

40

76

TableSize =7

Insert:
76

40

48

5

55

47

xample

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing |

49

o o1 A WO N L O

48

40

76

TableSize =7

Insert:
76

40

48

5

55

47

xample

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing |

48

40

o o1 A WO N L O

76

50

TableSize =7

Insert:
76

40

48

5

55

47

xample

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing |

o1

o o1 A WO N L O

48

55

40

76

TableSize =7

Insert:
76

40

48

5

55

47

xample

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5% 7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing Example

TableSize =7
0 48
1 Insert:
2 5 76 (76 % 7 = 6)
40 (40% 7 =5)
3 | 9 48 (48 % 7 = 6)
4 5 (5% 7=5)
5 40 55 (55 % 7 =6)
0 =
6 26 47 (47 % 7 =5)

Uh-oh: Foralln, ((n*n) +5) % 7 is 0, 2, 5, or 6
*Proof uses induction and (n?+5) % 7 = ((n-7)%+5) % 7
* Infact, for all cand k, (n%+c) % k ((n-k)%+c) % k

52

From bad news to good news

» Forallcandk, (n°+c) % k = ((n-k)?+c) % k

» The bad news is: After TableSize quadratic probes, we will
just cycle through the same indices

» The good news:

Assertion #1: If T = TableSize is prime and A < %2, then
guadratic probing will find an empty slot in at most T/2 probes

Assertion #2: For prime Tand 0 <1, < T/2 where | # |,
(h(key) +i9) % T = (h(key) +j°) % T
That is, if T is prime, the first T/2 quadratic probes map
to different locations

Assertion #3: Assertion #2 is the “key fact” for proving
Assertion #1

» So: If you keep A <2, no need to detect cycles

53

Clustering reconsidered

» Quadratic probing does not suffer from primary
clustering: quadratic nature quickly escapes the
neighborhood

» But it's no help if keys initially hash to the same
iIndex

Called secondary clustering

Any 2 keys that hash to the same value will have the
same series of moves after that

» Can avoid secondary clustering with a probe function
that depends on the key: double hashing

54

Open Addressing: Double hashing

» ldea:

Given two good hash functions h and g & 2 different keys k1 & k2, it
Is very unlikely that h (k1)==h(k2) & g(kl)==g(k2)

So make the probe function £ (1) = i*g(key)
That is, check h(key), then h(key)+g(key), then h(key)+2*g(key), ...

Even if h(key1)=h(key2), they’ll most likely go different places for the
next probe

» Probe sequence:
Oth probe: h(key) % TableSize
1st probe: (h(key) + g(key)) % TableSize
2"d probe: (h(key) + 2*g(key)) % TableSize
3d probe: (h(key) + 3*g(key)) % TableSize

i probe: (h(key) + i*g(key)) % TableSize

» Detail: Make sure g(key) isn’t 0
Why?
Also, shouldn’t be a multiple of TableSize

55

Double-hashing analysis

» Intuition: Since each probe is “jumping” by g (key) each
time, we “leave the neighborhood” and “go different
places from other initial collisions”

Say h(x)==h(y); it's unlikely that g(x)==g(y)

» But we could still have a problem like in quadratic probing
where we are not “safe” (infinite loop despite room in
table)

No guarantee that i*g(key) will let us try all/most indices

It is known that this infinite loop, despite space available,
cannot happen in at least one case:

h(key) = key % p
g(key) = q - (key % q)
2 < g<p

p and g are prime

56

Yet another reason to use a prime Tablesize

» S0, for double hashing
ith probe: (h(key) + i*g(key))% TableSize
» Say g(key) divides Tablesize

That Is, there is some integer x such that x*g(key)=Tablesize

After x probes, we’ll be back to trying the same indices as
before

» EX:

Tablesize=50

g(key)=25

Probing sequence:
h(key)
h(key)+25
h(key)+50=h(key)
h(key)+75=h(key)+25

» Only 1 & itself divide a prime

S7

More double-hashing facts

» Assume “uniform hashing”
Means probability of g (keyl) % p == g(key2) % p IS

1/p
» Non-trivial facts we won't prove:

Average # of probes given A (in the limit as
TableSize —w)

Unsuccessful search (intuitive): i
1-4
Successful search (less intuitive): EI (1 j
A \1-4

» Bottom line: unsuccessful bad (but not as bad as
linear probing), but successful is not nearly as bad

58

Charts: Double hashing (w/ uniform
hashing) vs. Linear probing

Uniform Hashing

Uniform Hashing

» 7.00 » 120.00
CIJ CIJ
o 6.00 // L 100.00
E 5.00 E
a / a 80.00
“= 4.00 =
o - / O 50.00
* 300 uniform hashing =3 ' = uniform hashing
Y / not found @ not found
80 2.00 —_—— & 40.00
a 100 = uniform hashing a 20.00 uniform hashing
> found > ; found
< 0.00 < 0.0
= 0 ! N0 MmO M~ s = o0 = O O 00 ™~ W W s Mmoo
OO 4 NN M NN 0w~ O A A NN MmN W~ O
L I e TR s R s Y s T e Y s [s T o T s Y s R o o 00 0O 00000 oo
Load Factor Load Factor
Linear Probing Linear Probing
» 16.00 » 350.00
& 1400] 2 30000
o o
= 12,00 / < 250.00
Q1000 a
S . / %5 200.00
=3 8.00 / ———linear probing #* 150.00 ——linear probing
o 6.00 / not found v not found
%0 4.00 %0 100.00 /
3 200 -~ linear prohing o 5000 linear prohing
> found > ﬁ ! found
< 0.00 < 000
= 00 " ~N Oy o M O M~ s o~ o0 = O O 00 M~ W s N oy o
OO = NN M SN W~ NS O — = &N M N0~ 0O
[I e I s R s [s T e T s T s Y s Y s Y o Y o o 0O O 0 o0 o oo oo
Load Factor Load Factor

We've explored different methods of collision
detection

» Chalining is easy
find, delete proportion to load factor on average; insert
constant
» Open addressing uses probe functions, has clustering issues as
table gets full
Why use it:
Less memory allocation

Some run-time overhead for allocating linked list (or whatever)
nodes; open addressing could be faster

Arguably easier data representation

» Now:
Growing the table when it gets too full: Called ‘rehashing’

Relation between hashing/comparing and connection to Java

60

Rehashing

» Like with array-based stacks/queues/lists, if table gets
too full, create a bigger table and copy everything over

» With chaining, we get to decide what “too full” means
Keep load factor reasonable (e.g., < 1)?
Consider average or max size of non-empty chains?

» For open addressing, half-full is a good rule of thumb

» New table size
Twice-as-big is a good idea, except...
That won’t be prime!
So go about twice-as-big

Can have a list of prime numbers in your code since you
won't grow more than 20-30 times

If you do need more primes, not too bad to calculate

61

More on rehashing

» What if we copy all data to the same indices in the new
table?

Not going to work; calculated index based on TableSize — we
may not be able to find it later

» Go through current table, do standard insert for each into
new table; run-time?
O(n): Iterate through table

» But resize is an O(n) operation, involving n calls to the
hash function (1 for each insert in the new table)
|s there some way to avoid all those hash function calls again?

Space/time tradeoff: Could store h (key) with each data item,
but since rehashing is rare, this is probably a poor use of space

And growing the table is still O(n); only helps by a constant factor

62

Hashing and comparing

» For insert/find, as we go through the chain or keep probing, we
have to compare each item we see to the key we’re looking for

We need to have a comparator (or key’s type needs to be
comparable)

Don’t actually need < & >; just =

» S0 a hash table needs a hash function and a comparator
In Project 2, you'll use two function objects

The Java standard library uses a more OO approach where each
object has an equals method and a hashCode method:

class Object {
boolean equals (Object o) {..}
int hashCode () {..}

63

Equal objects must hash the same

» The Java library (and your project hash table) make a
very important assumption that clients must satisfy...

» OO way of saying it:
If a.equals (b), then we must require
a.hashCode () ==b.hashCode ()

» Function object way of saying it:
If c.compare(a,b) == 0, then we must require
h.hash(a) == h.hash (b)

» What would happen if we didn’t do this?

64

Java bottom line

» Lots of Java libraries use hash tables, perhaps
without your knowledge

» So: If you ever override equals, you need to
override hashCode also in a consistent way

65

(Incorrect)

xample

» Think about using a hash table holding points

66

PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle (double theta2) { theta+=theta2; }

goolean equals (Object otherObject) ({

(this==otherOb-ject) true;
(otherObject==null) false;
(getClass () !'=other.getClass()) false;

PolarPoint other = (PolarPoint)otherObject;
double angleDiff =
(theta - other.theta) % (2*Math.PI);
double rDiff = r - other.r;
Math.abs (angleDiff) < 0.0001
Math.abs (rDiff) < 0.0001;
}

// wrong: must override hashCode!

Aside: Comparable/Comparator have rules
too

Comparison must impose a consistent, total ordering:
For all a, b, and c,

If compare (a,b) < 0, then compare(b,a) > 0
If compare (a,b) == 0, then compare(b,a) == 0

If compare (a,b) < 0and compare(b,c) < 0,
then compare(a,c) < 0

What would happen if compareTo() just randomly
returned -1, O or 17

67

Final word on hashing

» The hash table is one of the most important data structures
Supports only £ind, insert, and delete efficiently
FindMin, FindMax, predecessor, etc.: not so efficiently

Most likely data-structure to be asked about in interviews; many
real-world applications

» Important to use a good hash function
Good distribution
Uses enough of key’s values

» Important to keep hash table at a good size
Prime #
Preferable A depends on type of table

» Side-comment: hash functions have uses beyond hash tables
Examples: Cryptography, check-sums

68

