
CSE332: Data Abstractions

Lecture 11: Hash Tables

Tyler Robison

Summer 2010

1

Hash Table: Another dictionary

2

 Aim for constant-time (i.e., O(1)) find, insert, and delete

 “On average” under some reasonable assumptions

 A hash table is an array of some fixed size

 Define a mapping from each key to a location in table

 Basic idea: 0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

Hash tables

3

 There are m possible keys (m typically large, even

infinite) but we expect our table to have only n items

where n is much less than m (often written n << m)

Many dictionaries have this property

 Compiler: All possible identifiers allowed by the language

vs. those used in some file of one program

 Database: All possible student names vs. students enrolled

 AI: All possible chess-board configurations vs. those

considered by the current player

Hash functions

4

Hash function: Our key to index mapping

An ideal hash function:

 Is fast to compute

 “Rarely” hashes two “used” keys to the same index
 Often impossible in theory; easy in practice

 Will handle collisions a bit later

0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

Who hashes what?

5

 Hash tables can be generic
 To store elements of type E, we just need E to be:

1. Comparable: order any two E (like with all dictionaries)

2. Hashable: convert any E to an int

 When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles:

• We will learn both roles, but most programmers “in the real world”

spend more time on the client side, while still having an

understanding of the library

E int table-index
collision? collision

resolution

client hash table library

More on roles

6

Two roles must both contribute to minimizing collisions

• Client should aim for different ints for expected items

– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices

– conversion to index is almost always “mod table-size”

– using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?

What to hash?

7

In lecture we will consider the two most common

things to hash: integers and strings

 If you have objects with several fields, it is usually best

to have most of the “identifying fields” contribute to

the hash to avoid collisions

 Example:
class Person {

String first; String middle; String
last;

int age;
}

Hashing integers

8

 key space = integers
 Useful for examples

 Simple hash function:
h(key) = key % TableSize

 Client: f(x) = x

 Library g(x) = x % TableSize

 Fairly fast and natural

 Example:
 TableSize = 10

 Insert 7, 18, 41, 34, 10

 (As usual, ignoring data “along for the
ride”)

 What could go wrong?
 Now insert 20….

0

1

2

3

4

5

6

7

8

9

10

41

34

7

18

Collision-avoidance

9

 Collision: Two keys map to the same index

 With “x % TableSize” the number of collisions depends
on
 the ints inserted

 TableSize

 Larger table-size tends to help, but not always
 Example: Insert 12, 22, 32 with TableSize = 10 vs.

TableSize = 6

 Technique: Pick table size to be prime. Why?
 Real-life data tends to have a pattern, and “multiples of 61” are

probably less likely than “multiples of 60”

 Later we‟ll see that one collision-handling strategy does
provably better with prime table size

 Usually use something like 10 for examples though

0 12

1

2 32

3

4 22

5

More arguments for a prime table size

10

If TableSize is 60 and…
 Lots of data items are multiples of 5, wasting 80% of table

 Lots of data items are multiples of 10, wasting 90% of table

 Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61…
 Collisions can still happen, but 5, 10, 15, 20, … will fill table

 Collisions can still happen but 10, 20, 30, 40, … will fill table

 Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then

(a * x) % y == (b * x) % y if and only if a % y == b % y
 So, given table size y and keys as multiples of x, we‟ll get a decent

distribution if x & y are co-prime

 Good to have a TableSize that has not common factors with any
“likely pattern” x

What if we don’t have ints as keys?

11

 If keys aren‟t ints, the client must convert to an int
 Trade-off: speed and distinct keys hashing to distinct ints

 Very important example: Strings
 Key space K = s0s1s2…sm-1

 Where si are chars: si  [0,51] or si  [0,255] or si  [0,216-1]

 Some choices: Which avoid collisions best?

1. h(K) = s0 % TableSize

2. h(K) = % TableSize

3. h(K) = % TableSize

What causes collisions for each?

1

0

m

i

i

s




 
 
 
















1

0

37
k

i

i

is

Anything w/ same

first letter

Any rearrangement

of letters

Hmm… not so clear

Java-esque String Hash

12

 Java characters in Unicode format; 216 bits

 Can compute efficiently via a trick called Horner‟s

Rule:

 Idea: Avoid expensive computation of 31k

 Say n=4

 h=((s[0]*31+s[1])*31+s[2])*31+s[3]

Specializing hash functions

13

How might you hash differently if all your strings were

web addresses (URLs)?

Combining hash functions

14

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. When smashing two hashes into one hash, use bitwise-
xor

 Problem with Bitwise AND?

 Produces too many 0 bits

 Problem with Bitwise OR?

 Produces too many 1 bits

3. Rely on expertise of others; consult books and other
resources

4. If keys are known ahead of time, choose a perfect hash

Additional operations

15

 How would we do the following in a hashtable?

 findMin()

 findMax()

 predecessor(key)

 Hashtables really not set up for these; need to

search everything, O(n) time

 Could try a hack:

 Separately store max & min values; update on insert &

delete

 What about „2nd to max value‟, predecessor, in-order

traversal, etc; those are fast in an AVL tree

Hash Tables: A Different ADT?

16

 In terms of a Dictionary ADT for just insert, find,

delete, hash tables and balanced trees are just

different data structures

 Hash tables O(1) on average (assuming few collisions)

 Balanced trees O(log n) worst-case

 Constant-time is better, right?

 Yes, but you need “hashing to behave” (collisions)

 Yes, but findMin, findMax, predecessor, and

successor go from O(log n) to O(n)

 Why your textbook considers this to be a different ADT

 Not so important to argue over the definitions

Collision resolution

17

Collision:

When two keys map to the same location in the hash

table

We try to avoid it, but number-of-keys exceeds table

size

So we can resolve collisions in a couple of different

ways:

 Separate chaining

 Open addressing

Separate Chaining

18

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

19

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /
Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

20

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

21

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

22

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Separate Chaining

23

Chaining: All keys that map to the

same table location are kept in

a list (a.k.a. a “chain” or

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12,

42 with mod hashing and
TableSize = 10

Why put them at the front?

Handling duplicates?

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

Thoughts on chaining

24

 Worst-case time for find?
 Linear

 But only with really bad luck or bad hash function

 So not worth avoiding (e.g., with balanced trees at each
bucket)
 Keep # of items in each bucket small

 Overhead of AVL tree, etc. not worth it for small n

 Beyond asymptotic complexity, some “data-structure
engineering” may be warranted
 Linked list vs. array or a hybrid of the two

 Move-to-front (part of Project 2)

 Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case
 A time-space trade-off…

Time vs. space (constant factors only here)

25

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /

A more rigorous chaining analysis

26

Definition: The load factor, , of a hash table is

N

TableSize
 

N=number of elements

Under separate chaining, the average number of elements per

bucket is…?



So if some inserts are followed by random finds, then on

average:

• Each unsuccessful find compares against ____ items

• Each successful find compares against _____ items

• If  is low, find & insert likely to be O(1)

• We like to keep  around 1 for separate chaining



/2

Separate Chaining Deletion

27

 Not too bad

 Find in table

 Delete from bucket

 Say, delete 12

 Similar run-time as insert

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

An Alternative to Separate Chaining: Open

Addressing

28

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /

An Alternative to Separate Chaining: Open

Addressing

29

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining: Open

Addressing

30

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining: Open

Addressing

31

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining: Open

Addressing

32

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full,

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

Open addressing: Storing in the table

33

 This is one example of open addressing

 More generally, we just need to describe where to check next
when one attempt fails (cell already in use)

 Each version of open addressing involves specifying a
sequence of indices to try

 Trying the next spot is called probing

 In the above example, our ith probe was (h(key) + i) %
TableSize

 To get the next index to try, we just added 1 (mod the Tablesize)

 This is called linear probing

 More generally we have some probe function f and use

(h(key) + f(i)) % TableSize

for the ith probe (start at i=0)

 For linear probing, f(i)=i

More about Open Addressing

34

 Find works similarly:
 Keep probing until we find it

 Or, if we hit null, we know it‟s not in the table

 How does open addressing work with high
load factor ()
 Poorly

 Too many probes means no more O(1)

 So want larger tables

 Find with =1?

 Deletion? How about we just remove it?
 Take previous example, delete 38

 Then do a find on 8

 Hmm… this isn‟t going to work

 Stick with lazy deletion

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

Terminology

35

We and the book use the terms

 “chaining” or “separate chaining”: Linked list in each

bucket

vs.

 “open addressing”: Store directly in table

Very confusingly,

 “open hashing” is a synonym for “chaining”

vs.

 “closed hashing” is a synonym for “open addressing”

Primary Clustering

36

It turns out linear probing is a bad idea, even though the

probe function is quick to compute (a good thing)

[R. Sedgewick]

Tends to produce

clusters, which lead

to long probing

sequences

Saw this happening in

earlier example

• Called primary

clustering

Analysis of Linear Probing

37

 Trivial fact: For any  < 1, linear probing will find an empty
slot
 It is “safe” in this sense: no infinite loop unless table is full

 Non-trivial facts we won‟t prove:

Average # of probes given  (limit as TableSize →)
 Unsuccessful search:

 Successful search:

 This is pretty bad: need to leave sufficient empty space in
the table to get decent performance

  











2
1

1
1

2

1



 












1

1
1

2

1

In a chart

38

 Linear-probing performance degrades rapidly as table gets full
 (Formula assumes “large table”)

 By comparison, chaining performance is linear in  and has no
trouble with >1

Open Addressing: Quadratic probing

39

 We can avoid primary clustering by changing the
probe function

 A common technique is quadratic probing:
 f(i) = i2

 So probe sequence is:
 0th probe: h(key) % TableSize

 1st probe: (h(key) + 1) % TableSize

 2nd probe: (h(key) + 4) % TableSize

 3rd probe: (h(key) + 9) % TableSize

 …

 ith probe: (h(key) + i2) % TableSize

 Intuition: Probes quickly “leave the neighborhood”

Quadratic Probing Example

40

0

1

2

3

4

5

6

7

8

9

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

41

0

1

2

3

4

5

6

7

8

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

42

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

43

0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

44

0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

45

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

How about 98?

Another Quadratic Probing Example

46

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6

Another Quadratic Probing Example

47

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6 76

Another Quadratic Probing Example

48

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

49

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

50

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76

Another Quadratic Probing Example

51

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Another Quadratic Probing Example

52

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Uh-oh: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

•Proof uses induction and (n2+5) % 7 = ((n-7)2+5) % 7

• In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k

From bad news to good news

53

 For all c and k, (n2+c) % k = ((n-k)2+c) % k

 The bad news is: After TableSize quadratic probes, we will

just cycle through the same indices

 The good news:

 Assertion #1: If T = TableSize is prime and  < ½, then

quadratic probing will find an empty slot in at most T/2 probes

 Assertion #2: For prime T and 0  i,j  T/2 where i  j,

(h(key) + i2) % T  (h(key) + j2) % T

That is, if T is prime, the first T/2 quadratic probes map

to different locations

 Assertion #3: Assertion #2 is the “key fact” for proving

Assertion #1

 So: If you keep  < ½, no need to detect cycles

Clustering reconsidered

54

 Quadratic probing does not suffer from primary
clustering: quadratic nature quickly escapes the
neighborhood

 But it‟s no help if keys initially hash to the same
index
 Called secondary clustering

 Any 2 keys that hash to the same value will have the
same series of moves after that

 Can avoid secondary clustering with a probe function
that depends on the key: double hashing

Open Addressing: Double hashing

55

 Idea:
 Given two good hash functions h and g & 2 different keys k1 & k2, it

is very unlikely that h(k1)==h(k2) & g(k1)==g(k2)

 So make the probe function f(i) = i*g(key)

 That is, check h(key), then h(key)+g(key), then h(key)+2*g(key), …

 Even if h(key1)=h(key2), they‟ll most likely go different places for the
next probe

 Probe sequence:
 0th probe: h(key) % TableSize

 1st probe: (h(key) + g(key)) % TableSize

 2nd probe: (h(key) + 2*g(key)) % TableSize

 3rd probe: (h(key) + 3*g(key)) % TableSize

 …

 ith probe: (h(key) + i*g(key)) % TableSize

 Detail: Make sure g(key) isn’t 0

 Why?

 Also, shouldn’t be a multiple of TableSize

Double-hashing analysis

56

 Intuition: Since each probe is “jumping” by g(key) each
time, we “leave the neighborhood” and “go different
places from other initial collisions”
 Say h(x)==h(y); it‟s unlikely that g(x)==g(y)

 But we could still have a problem like in quadratic probing
where we are not “safe” (infinite loop despite room in
table)
 No guarantee that i*g(key) will let us try all/most indices

 It is known that this infinite loop, despite space available,
cannot happen in at least one case:
 h(key) = key % p

 g(key) = q – (key % q)

 2 < q < p

 p and q are prime

Yet another reason to use a prime Tablesize

57

 So, for double hashing

ith probe: (h(key) + i*g(key))% TableSize

 Say g(key) divides Tablesize
 That is, there is some integer x such that x*g(key)=Tablesize

 After x probes, we‟ll be back to trying the same indices as
before

 Ex:
 Tablesize=50

 g(key)=25

 Probing sequence:
 h(key)

 h(key)+25

 h(key)+50=h(key)

 h(key)+75=h(key)+25

 Only 1 & itself divide a prime

More double-hashing facts

58

 Assume “uniform hashing”
 Means probability of g(key1) % p == g(key2) % p is
1/p

 Non-trivial facts we won‟t prove:

Average # of probes given  (in the limit as
TableSize →)
 Unsuccessful search (intuitive):

 Successful search (less intuitive):

 Bottom line: unsuccessful bad (but not as bad as
linear probing), but successful is not nearly as bad

1

1 

1 1
log

1
e

 

 
 
 

Charts: Double hashing (w/ uniform

hashing) vs. Linear probing

59

We’ve explored different methods of collision

detection

60

 Chaining is easy

 find, delete proportion to load factor on average; insert

constant

 Open addressing uses probe functions, has clustering issues as

table gets full

 Why use it:

 Less memory allocation

 Some run-time overhead for allocating linked list (or whatever)

nodes; open addressing could be faster

 Arguably easier data representation

 Now:

 Growing the table when it gets too full: Called „rehashing‟

 Relation between hashing/comparing and connection to Java

Rehashing

61

 Like with array-based stacks/queues/lists, if table gets
too full, create a bigger table and copy everything over

 With chaining, we get to decide what “too full” means
 Keep load factor reasonable (e.g., < 1)?

 Consider average or max size of non-empty chains?

 For open addressing, half-full is a good rule of thumb

 New table size
 Twice-as-big is a good idea, except…

 That won‟t be prime!

 So go about twice-as-big

 Can have a list of prime numbers in your code since you
won‟t grow more than 20-30 times

 If you do need more primes, not too bad to calculate

More on rehashing

62

 What if we copy all data to the same indices in the new
table?

 Not going to work; calculated index based on TableSize – we
may not be able to find it later

 Go through current table, do standard insert for each into
new table; run-time?

 O(n): Iterate through table

 But resize is an O(n) operation, involving n calls to the
hash function (1 for each insert in the new table)

 Is there some way to avoid all those hash function calls again?

 Space/time tradeoff: Could store h(key) with each data item,
but since rehashing is rare, this is probably a poor use of space

 And growing the table is still O(n); only helps by a constant factor

Hashing and comparing

63

 For insert/find, as we go through the chain or keep probing, we
have to compare each item we see to the key we‟re looking for
 We need to have a comparator (or key‟s type needs to be

comparable)

 Don‟t actually need < & >; just =

 So a hash table needs a hash function and a comparator
 In Project 2, you‟ll use two function objects

 The Java standard library uses a more OO approach where each
object has an equals method and a hashCode method:

class Object {

boolean equals(Object o) {…}

int hashCode() {…}

…

}

Equal objects must hash the same

64

 The Java library (and your project hash table) make a

very important assumption that clients must satisfy…

 OO way of saying it:

If a.equals(b), then we must require

a.hashCode()==b.hashCode()

 Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

 What would happen if we didn’t do this?

Java bottom line

65

 Lots of Java libraries use hash tables, perhaps

without your knowledge

 So: If you ever override equals, you need to

override hashCode also in a consistent way

(Incorrect) Example

66

 Think about using a hash table holding points
class PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle(double theta2) { theta+=theta2; }
…
boolean equals(Object otherObject) {

if(this==otherObject) return true;
if(otherObject==null) return false;
if(getClass()!=other.getClass()) return false;
PolarPoint other = (PolarPoint)otherObject;
double angleDiff =

(theta – other.theta) % (2*Math.PI);
double rDiff = r – other.r;
return Math.abs(angleDiff) < 0.0001

&& Math.abs(rDiff) < 0.0001;
}
// wrong: must override hashCode!

}

Aside: Comparable/Comparator have rules

too

67

Comparison must impose a consistent, total ordering:

For all a, b, and c,

 If compare(a,b) < 0, then compare(b,a) > 0

 If compare(a,b) == 0, then compare(b,a) == 0

 If compare(a,b) < 0 and compare(b,c) < 0,

then compare(a,c) < 0

What would happen if compareTo() just randomly

returned -1, 0 or 1?

Final word on hashing

68

 The hash table is one of the most important data structures
 Supports only find, insert, and delete efficiently

 FindMin, FindMax, predecessor, etc.: not so efficiently

 Most likely data-structure to be asked about in interviews; many
real-world applications

 Important to use a good hash function
 Good distribution

 Uses enough of key‟s values

 Important to keep hash table at a good size
 Prime #

 Preferable  depends on type of table

 Side-comment: hash functions have uses beyond hash tables
 Examples: Cryptography, check-sums

