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Hash Table:  Another dictionary
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 Aim for constant-time (i.e., O(1)) find, insert, and delete

 “On average” under some reasonable assumptions

 A hash table is an array of some fixed size

 Define a mapping from each key to a location in table

 Basic idea: 0

…

TableSize –1 

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)



Hash tables
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 There are m possible keys (m typically large, even 

infinite) but we expect our table to have only n items 

where n is much less than m (often written n << m)

Many dictionaries have this property

 Compiler: All possible identifiers allowed by the language 

vs. those used in some file of one program

 Database: All possible student names vs. students enrolled

 AI: All possible chess-board configurations vs. those 

considered by the current player



Hash functions
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Hash function: Our key to index mapping

An ideal hash function:

 Is fast to compute

 “Rarely” hashes two “used” keys to the same index
 Often impossible in theory; easy in practice

 Will handle collisions a bit later

0

…

TableSize –1 

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)



Who hashes what?
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 Hash tables can be generic
 To store elements of type E, we just need E to be:

1. Comparable: order any two E (like with all dictionaries)

2. Hashable: convert any E to an int

 When hash tables are a reusable library, the division of 
responsibility generally breaks down into two roles:

• We will learn both roles, but most programmers “in the real world” 

spend more time on the client side, while still having an 

understanding of the library

E int table-index
collision? collision

resolution

client hash table library



More on roles
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Two roles must both contribute to minimizing collisions

• Client should aim for different ints for expected items

– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices

– conversion to index is almost always “mod table-size”

– using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?



What to hash?
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In lecture we will consider the two most common 

things to hash: integers and strings

 If you have objects with several fields, it is usually best 

to  have most of the “identifying fields” contribute to 

the hash to avoid collisions

 Example: 
class Person { 

String first; String middle; String 
last;     

int age; 
}



Hashing integers
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 key space = integers
 Useful for examples

 Simple hash function: 
h(key) = key % TableSize

 Client: f(x) = x

 Library g(x) = x % TableSize

 Fairly fast and natural

 Example:
 TableSize = 10

 Insert 7, 18, 41, 34, 10

 (As usual, ignoring data “along for the 
ride”)

 What could go wrong?
 Now insert 20….

0

1

2

3

4

5

6

7

8

9

10

41

34

7

18



Collision-avoidance
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 Collision:  Two keys map to the same index

 With “x % TableSize” the number of collisions depends 
on
 the ints inserted

 TableSize

 Larger table-size tends to help, but not always
 Example: Insert 12, 22, 32 with TableSize = 10 vs. 

TableSize = 6

 Technique: Pick table size to be prime. Why?
 Real-life data tends to have a pattern, and “multiples of 61” are 

probably less likely than “multiples of 60”

 Later we‟ll see that one collision-handling strategy does 
provably better with prime table size

 Usually use something like 10 for examples though

0 12

1

2 32

3

4 22

5



More arguments for a prime table size
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If TableSize is 60 and…
 Lots of data items are multiples of 5, wasting 80% of table

 Lots of data items are multiples of 10, wasting 90% of table

 Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61…
 Collisions can still happen, but 5, 10, 15, 20, … will fill table

 Collisions can still happen but 10, 20, 30, 40, … will fill table

 Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then 

(a * x) % y == (b * x) % y if and only if a % y == b % y
 So, given table size y and keys as multiples of x, we‟ll get a decent 

distribution if x & y are co-prime

 Good to have a TableSize that has not common factors with any 
“likely pattern” x



What if we don’t have ints as keys?
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 If keys aren‟t ints, the client must convert to an int
 Trade-off: speed and distinct keys hashing to distinct ints

 Very important example: Strings
 Key space K  = s0s1s2…sm-1

 Where si are chars:  si  [0,51] or si  [0,255] or si  [0,216-1]

 Some choices: Which avoid collisions best?

1. h(K) = s0 % TableSize

2. h(K) =                   % TableSize

3. h(K) =                           % TableSize

What causes collisions for each?

1

0

m

i

i

s
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0

37
k

i

i

is

Anything w/ same 

first letter

Any rearrangement 

of letters

Hmm… not so clear



Java-esque String Hash
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 Java characters in Unicode format; 216 bits

 Can compute efficiently via a trick called Horner‟s 

Rule:

 Idea: Avoid expensive computation of 31k

 Say n=4

 h=((s[0]*31+s[1])*31+s[2])*31+s[3]



Specializing hash functions
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How might you hash differently if all your strings were 

web addresses (URLs)?



Combining hash functions
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A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. When smashing two hashes into one hash, use bitwise-
xor

 Problem with Bitwise AND?

 Produces too many 0 bits

 Problem with Bitwise OR?

 Produces too many 1 bits

3. Rely on expertise of others; consult books and other 
resources

4. If keys are known ahead of time, choose a perfect hash



Additional operations
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 How would we do the following in a hashtable?

 findMin()

 findMax()

 predecessor(key)

 Hashtables really not set up for these; need to 

search everything, O(n) time

 Could try a hack:

 Separately store max & min values; update on insert & 

delete

 What about „2nd to max value‟, predecessor, in-order 

traversal, etc; those are fast in an AVL tree



Hash Tables: A Different ADT?
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 In terms of a Dictionary ADT for just insert, find, 

delete, hash tables and balanced trees are just 

different data structures

 Hash tables O(1) on average (assuming few collisions)

 Balanced trees O(log n) worst-case

 Constant-time is better, right?

 Yes, but you need “hashing to behave” (collisions)

 Yes, but findMin, findMax, predecessor, and 

successor go from O(log n) to O(n)

 Why your textbook considers this to be a different ADT

 Not so important to argue over the definitions



Collision resolution
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Collision: 

When two keys map to the same location in the hash 

table

We try to avoid it, but number-of-keys exceeds table 

size

So we can resolve collisions in a couple of different 

ways:

 Separate chaining

 Open addressing



Separate Chaining
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0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /
Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10

Why put them at the front?

Handling duplicates?

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /



Thoughts on chaining
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 Worst-case time for find?
 Linear

 But only with really bad luck or bad hash function

 So not worth avoiding (e.g., with balanced trees at each 
bucket)
 Keep # of items in each bucket small

 Overhead of AVL tree, etc. not worth it for small n

 Beyond asymptotic complexity, some “data-structure 
engineering” may be warranted
 Linked list vs. array or a hybrid of the two

 Move-to-front (part of Project 2)

 Leave room for 1 element (or 2?) in the table itself, to optimize 
constant factors for the common case
 A time-space trade-off…



Time vs. space (constant factors only here)
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0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /



A more rigorous chaining analysis
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Definition: The load factor, , of a hash table is

N

TableSize
 

N=number of elements

Under separate chaining, the average number of elements per 

bucket is…?



So if some inserts are followed by random finds, then on 

average:

• Each unsuccessful find compares against ____ items

• Each successful find compares against _____ items

• If  is low, find & insert likely to be O(1)

• We like to keep  around 1 for separate chaining



/2



Separate Chaining Deletion
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 Not too bad

 Find in table

 Delete from bucket

 Say, delete 12

 Similar run-time as insert

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /



An Alternative to Separate Chaining: Open 

Addressing
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 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /



An Alternative to Separate Chaining: Open 

Addressing
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0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10



An Alternative to Separate Chaining: Open 

Addressing
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0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10



An Alternative to Separate Chaining: Open 

Addressing
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0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10



An Alternative to Separate Chaining: Open 

Addressing
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0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10



Open addressing:  Storing in the table 
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 This is one example of open addressing

 More generally, we just need to describe where to check next 
when one attempt fails (cell already in use)

 Each version of open addressing involves specifying a 
sequence of indices to try

 Trying the next spot is called probing

 In the above example, our ith probe was (h(key) + i) % 
TableSize

 To get the next index to try, we just added 1 (mod the Tablesize)

 This is called linear probing

 More generally we have some probe function f and use 

(h(key) + f(i)) % TableSize

for the ith probe (start at i=0)

 For linear probing, f(i)=i



More about Open Addressing
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 Find works similarly:
 Keep probing until we find it

 Or, if we hit null, we know it‟s not in the table

 How does open addressing work with high 
load factor ()
 Poorly

 Too many probes means no more O(1)

 So want larger tables

 Find with =1?

 Deletion?  How about we just remove it?
 Take previous example, delete 38

 Then do a find on 8

 Hmm… this isn‟t going to work

 Stick with lazy deletion

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19



Terminology
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We and the book use the terms

 “chaining” or “separate chaining”:  Linked list in each 

bucket

vs.

 “open addressing”:  Store directly in table

Very confusingly,

 “open hashing” is a synonym for “chaining”

vs.

 “closed hashing” is a synonym for “open addressing”



Primary Clustering
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It turns out linear probing is a bad idea, even though the 

probe function is quick to compute (a good thing)

[R. Sedgewick]

Tends to produce 

clusters, which lead 

to long probing 

sequences

Saw this happening in 

earlier example 

• Called primary 

clustering



Analysis of Linear Probing
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 Trivial fact: For any  < 1, linear probing will find an empty 
slot
 It is “safe” in this sense: no infinite loop unless table is full

 Non-trivial facts we won‟t prove:

Average # of probes given  (limit as TableSize → )
 Unsuccessful search:

 Successful search:  

 This is pretty bad: need to leave sufficient empty space in 
the table to get decent performance
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In a chart
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 Linear-probing performance degrades rapidly as table gets full
 (Formula assumes “large table”)

 By comparison, chaining performance is linear in  and has no 
trouble with >1



Open Addressing: Quadratic probing

39

 We can avoid primary clustering by changing the 
probe function

 A common technique is quadratic probing:
 f(i) = i2

 So probe sequence is:
 0th probe:  h(key) % TableSize

 1st probe: (h(key) + 1) % TableSize

 2nd probe: (h(key) + 4) % TableSize

 3rd probe: (h(key) + 9) % TableSize

 …

 ith probe: (h(key) + i2) % TableSize

 Intuition: Probes quickly “leave the neighborhood”



Quadratic Probing Example
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0

1

2

3

4

5

6

7

8

9

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0

1

2

3

4

5

6

7

8

9 89

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10

Insert: 

89

18

49

58

79

How about 98?



Another Quadratic Probing Example
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TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0

1

2

3

4

5

6



Another Quadratic Probing Example

47

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0

1

2

3

4

5

6 76



Another Quadratic Probing Example

48

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0

1

2

3

4

5 40

6 76



Another Quadratic Probing Example

49

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76



Another Quadratic Probing Example
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TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76



Another Quadratic Probing Example
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TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76



Another Quadratic Probing Example

52

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Uh-oh: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

•Proof uses induction and  (n2+5) % 7 = ((n-7)2+5) % 7

• In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k



From bad news to good news
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 For all c and k, (n2+c) % k = ((n-k)2+c) % k

 The bad news is: After TableSize quadratic probes, we will 

just cycle through the same indices

 The good news: 

 Assertion #1: If T = TableSize is prime and  < ½, then 

quadratic probing will find an empty slot in at most T/2 probes

 Assertion #2: For prime T and 0  i,j  T/2 where i  j,

(h(key) + i2) % T  (h(key) + j2) % T

That is, if T is prime, the first T/2 quadratic probes map 

to different locations

 Assertion #3: Assertion #2 is the “key fact” for proving 

Assertion #1

 So: If you keep  < ½, no need to detect cycles



Clustering reconsidered
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 Quadratic probing does not suffer from primary 
clustering: quadratic nature quickly escapes the 
neighborhood

 But it‟s no help if keys initially hash to the same 
index
 Called secondary clustering

 Any 2 keys that hash to the same value will have the 
same series of moves after that

 Can avoid secondary clustering with a probe function 
that depends on the key: double hashing



Open Addressing: Double hashing
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 Idea: 
 Given two good hash functions h and g & 2 different keys k1 & k2, it 

is very unlikely that  h(k1)==h(k2) & g(k1)==g(k2)

 So make the probe function f(i) = i*g(key)

 That is, check h(key), then h(key)+g(key), then h(key)+2*g(key), …

 Even if h(key1)=h(key2), they‟ll most likely go different places for the 
next probe

 Probe sequence:
 0th probe:  h(key) % TableSize

 1st probe:  (h(key) + g(key)) % TableSize

 2nd probe: (h(key) + 2*g(key)) % TableSize

 3rd probe: (h(key) + 3*g(key)) % TableSize

 …

 ith probe: (h(key) + i*g(key)) % TableSize

 Detail: Make sure g(key) isn’t 0

 Why?

 Also, shouldn’t be a multiple of TableSize



Double-hashing analysis
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 Intuition: Since each probe is “jumping” by g(key) each 
time, we “leave the neighborhood” and “go different 
places from other initial collisions”
 Say h(x)==h(y); it‟s unlikely that g(x)==g(y)

 But we could still have a problem like in quadratic probing 
where we are not “safe” (infinite loop despite room in 
table)
 No guarantee that i*g(key) will let us try all/most indices

 It is known that this infinite loop, despite space available, 
cannot happen in at least one case:
 h(key) = key % p

 g(key) = q – (key % q)

 2 < q < p

 p and q are prime



Yet another reason to use a prime Tablesize
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 So, for double hashing

ith probe:  (h(key) + i*g(key))% TableSize

 Say g(key) divides Tablesize
 That is, there is some integer x such that x*g(key)=Tablesize

 After x probes, we‟ll be back to trying the same indices as 
before

 Ex:
 Tablesize=50

 g(key)=25

 Probing sequence:
 h(key)

 h(key)+25

 h(key)+50=h(key)

 h(key)+75=h(key)+25

 Only 1 & itself divide a prime



More double-hashing facts
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 Assume “uniform hashing” 
 Means probability of g(key1) % p == g(key2) % p is 
1/p

 Non-trivial facts we won‟t prove:

Average # of probes given  (in the limit as 
TableSize → )
 Unsuccessful search (intuitive):

 Successful search (less intuitive):

 Bottom line: unsuccessful bad (but not as bad as 
linear probing), but successful is not nearly as bad

1

1 

1 1
log

1
e

 

 
 
 



Charts: Double hashing (w/ uniform 

hashing) vs. Linear probing
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We’ve explored different methods of collision 

detection

60

 Chaining is easy

 find, delete proportion to load factor on average; insert 

constant

 Open addressing uses probe functions, has clustering issues as 

table gets full

 Why use it:

 Less memory allocation

 Some run-time overhead for allocating linked list (or whatever) 

nodes; open addressing could be faster

 Arguably easier data representation

 Now: 

 Growing the table when it gets too full: Called „rehashing‟

 Relation between hashing/comparing and connection to Java



Rehashing

61

 Like with array-based stacks/queues/lists, if table gets 
too full, create a bigger table and copy everything over

 With chaining, we get to decide what “too full” means
 Keep load factor reasonable (e.g., < 1)?

 Consider average or max size of non-empty chains?

 For open addressing, half-full is a good rule of thumb

 New table size
 Twice-as-big is a good idea, except…

 That won‟t be prime!

 So go about twice-as-big 

 Can have a list of prime numbers in your code since you 
won‟t grow more than 20-30 times

 If you do need more primes, not too bad to calculate



More on rehashing
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 What if we copy all data to the same indices in the new 
table?

 Not going to work; calculated index based on TableSize – we 
may not be able to find it later

 Go through current table, do standard insert for each into 
new table; run-time?

 O(n):  Iterate through table

 But resize is an O(n) operation, involving n calls to the 
hash function (1 for each insert in the new table)

 Is there some way to avoid all those hash function calls again?

 Space/time tradeoff: Could store h(key) with each data item, 
but since rehashing is rare, this is probably a poor use of space

 And growing the table is still O(n); only helps by a constant factor



Hashing and comparing
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 For insert/find, as we go through the chain or keep probing, we 
have to compare each item we see to the key we‟re looking for
 We need to have a comparator (or key‟s type needs to be 

comparable)

 Don‟t actually need < & >; just =

 So a hash table needs a hash function and a comparator
 In Project 2, you‟ll use two function objects

 The Java standard library uses a more OO approach where each 
object has an equals method and a hashCode method:

class Object { 

boolean equals(Object o) {…}

int hashCode() {…}

…

}



Equal objects must hash the same
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 The Java library (and your project hash table) make a 

very important assumption that clients must satisfy…

 OO way of saying it:

If a.equals(b), then we must require 

a.hashCode()==b.hashCode()

 Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

 What would happen if we didn’t do this?



Java bottom line
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 Lots of Java libraries use hash tables, perhaps 

without your knowledge

 So: If you ever override equals, you need to 

override hashCode also in a consistent way



(Incorrect) Example
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 Think about using a hash table holding points
class PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle(double theta2) { theta+=theta2; }
…
boolean equals(Object otherObject) {

if(this==otherObject) return true;
if(otherObject==null) return false;
if(getClass()!=other.getClass()) return false;
PolarPoint other = (PolarPoint)otherObject;
double angleDiff = 

(theta – other.theta) % (2*Math.PI);
double rDiff = r – other.r;
return Math.abs(angleDiff) < 0.0001

&& Math.abs(rDiff) < 0.0001;
}
// wrong: must override hashCode!

}



Aside: Comparable/Comparator have rules 

too
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Comparison must impose a consistent, total ordering:

For all a, b, and c,

 If compare(a,b) < 0, then compare(b,a) > 0

 If compare(a,b) == 0, then compare(b,a) == 0

 If compare(a,b) < 0 and compare(b,c) < 0,                        

then compare(a,c) < 0

What would happen if compareTo() just randomly 

returned -1, 0 or 1?



Final word on hashing
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 The hash table is one of the most important data structures
 Supports only find, insert, and delete efficiently

 FindMin, FindMax, predecessor, etc.: not so efficiently

 Most likely data-structure to be asked about in interviews; many 
real-world applications

 Important to use a good hash function
 Good distribution

 Uses enough of key‟s values

 Important to keep hash table at a good size
 Prime #

 Preferable  depends on type of table

 Side-comment: hash functions have uses beyond hash tables
 Examples: Cryptography, check-sums


