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Hash Table:  Another dictionary
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 Aim for constant-time (i.e., O(1)) find, insert, and delete

 “On average” under some reasonable assumptions

 A hash table is an array of some fixed size

 Define a mapping from each key to a location in table

 Basic idea: 0

…

TableSize –1 

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)



Hash tables
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 There are m possible keys (m typically large, even 

infinite) but we expect our table to have only n items 

where n is much less than m (often written n << m)

Many dictionaries have this property

 Compiler: All possible identifiers allowed by the language 

vs. those used in some file of one program

 Database: All possible student names vs. students enrolled

 AI: All possible chess-board configurations vs. those 

considered by the current player



Hash functions
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Hash function: Our key to index mapping

An ideal hash function:

 Is fast to compute

 “Rarely” hashes two “used” keys to the same index
 Often impossible in theory; easy in practice

 Will handle collisions a bit later

0

…

TableSize –1 

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)



Who hashes what?
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 Hash tables can be generic
 To store elements of type E, we just need E to be:

1. Comparable: order any two E (like with all dictionaries)

2. Hashable: convert any E to an int

 When hash tables are a reusable library, the division of 
responsibility generally breaks down into two roles:

• We will learn both roles, but most programmers “in the real world” 

spend more time on the client side, while still having an 

understanding of the library

E int table-index
collision? collision

resolution

client hash table library



More on roles
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Two roles must both contribute to minimizing collisions

• Client should aim for different ints for expected items

– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices

– conversion to index is almost always “mod table-size”

– using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?



What to hash?
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In lecture we will consider the two most common 

things to hash: integers and strings

 If you have objects with several fields, it is usually best 

to  have most of the “identifying fields” contribute to 

the hash to avoid collisions

 Example: 
class Person { 

String first; String middle; String 
last;     

int age; 
}



Hashing integers
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 key space = integers
 Useful for examples

 Simple hash function: 
h(key) = key % TableSize

 Client: f(x) = x

 Library g(x) = x % TableSize

 Fairly fast and natural

 Example:
 TableSize = 10

 Insert 7, 18, 41, 34, 10

 (As usual, ignoring data “along for the 
ride”)

 What could go wrong?
 Now insert 20….

0

1

2

3

4

5

6

7

8

9

10

41

34

7

18



Collision-avoidance
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 Collision:  Two keys map to the same index

 With “x % TableSize” the number of collisions depends 
on
 the ints inserted

 TableSize

 Larger table-size tends to help, but not always
 Example: Insert 12, 22, 32 with TableSize = 10 vs. 

TableSize = 6

 Technique: Pick table size to be prime. Why?
 Real-life data tends to have a pattern, and “multiples of 61” are 

probably less likely than “multiples of 60”

 Later we‟ll see that one collision-handling strategy does 
provably better with prime table size

 Usually use something like 10 for examples though

0 12

1

2 32

3

4 22

5



More arguments for a prime table size
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If TableSize is 60 and…
 Lots of data items are multiples of 5, wasting 80% of table

 Lots of data items are multiples of 10, wasting 90% of table

 Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61…
 Collisions can still happen, but 5, 10, 15, 20, … will fill table

 Collisions can still happen but 10, 20, 30, 40, … will fill table

 Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then 

(a * x) % y == (b * x) % y if and only if a % y == b % y
 So, given table size y and keys as multiples of x, we‟ll get a decent 

distribution if x & y are co-prime

 Good to have a TableSize that has not common factors with any 
“likely pattern” x



What if we don’t have ints as keys?
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 If keys aren‟t ints, the client must convert to an int
 Trade-off: speed and distinct keys hashing to distinct ints

 Very important example: Strings
 Key space K  = s0s1s2…sm-1

 Where si are chars:  si  [0,51] or si  [0,255] or si  [0,216-1]

 Some choices: Which avoid collisions best?

1. h(K) = s0 % TableSize

2. h(K) =                   % TableSize

3. h(K) =                           % TableSize

What causes collisions for each?

1

0

m

i

i

s




 
 
 
















1

0

37
k

i

i

is

Anything w/ same 

first letter

Any rearrangement 

of letters

Hmm… not so clear



Java-esque String Hash
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 Java characters in Unicode format; 216 bits

 Can compute efficiently via a trick called Horner‟s 

Rule:

 Idea: Avoid expensive computation of 31k

 Say n=4

 h=((s[0]*31+s[1])*31+s[2])*31+s[3]



Specializing hash functions
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How might you hash differently if all your strings were 

web addresses (URLs)?



Combining hash functions
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A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. When smashing two hashes into one hash, use bitwise-
xor

 Problem with Bitwise AND?

 Produces too many 0 bits

 Problem with Bitwise OR?

 Produces too many 1 bits

3. Rely on expertise of others; consult books and other 
resources

4. If keys are known ahead of time, choose a perfect hash



Additional operations
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 How would we do the following in a hashtable?

 findMin()

 findMax()

 predecessor(key)

 Hashtables really not set up for these; need to 

search everything, O(n) time

 Could try a hack:

 Separately store max & min values; update on insert & 

delete

 What about „2nd to max value‟, predecessor, in-order 

traversal, etc; those are fast in an AVL tree



Hash Tables: A Different ADT?
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 In terms of a Dictionary ADT for just insert, find, 

delete, hash tables and balanced trees are just 

different data structures

 Hash tables O(1) on average (assuming few collisions)

 Balanced trees O(log n) worst-case

 Constant-time is better, right?

 Yes, but you need “hashing to behave” (collisions)

 Yes, but findMin, findMax, predecessor, and 

successor go from O(log n) to O(n)

 Why your textbook considers this to be a different ADT

 Not so important to argue over the definitions



Collision resolution
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Collision: 

When two keys map to the same location in the hash 

table

We try to avoid it, but number-of-keys exceeds table 

size

So we can resolve collisions in a couple of different 

ways:

 Separate chaining

 Open addressing



Separate Chaining
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0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /
Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining

21

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10



Separate Chaining
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Chaining: All keys that map to the 

same table location are kept in 

a list    (a.k.a. a “chain” or 

“bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 

42 with mod hashing and 
TableSize = 10

Why put them at the front?

Handling duplicates?

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /



Thoughts on chaining
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 Worst-case time for find?
 Linear

 But only with really bad luck or bad hash function

 So not worth avoiding (e.g., with balanced trees at each 
bucket)
 Keep # of items in each bucket small

 Overhead of AVL tree, etc. not worth it for small n

 Beyond asymptotic complexity, some “data-structure 
engineering” may be warranted
 Linked list vs. array or a hybrid of the two

 Move-to-front (part of Project 2)

 Leave room for 1 element (or 2?) in the table itself, to optimize 
constant factors for the common case
 A time-space trade-off…



Time vs. space (constant factors only here)
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0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /



A more rigorous chaining analysis
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Definition: The load factor, , of a hash table is

N

TableSize
 

N=number of elements

Under separate chaining, the average number of elements per 

bucket is…?



So if some inserts are followed by random finds, then on 

average:

• Each unsuccessful find compares against ____ items

• Each successful find compares against _____ items

• If  is low, find & insert likely to be O(1)

• We like to keep  around 1 for separate chaining



/2



Separate Chaining Deletion
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 Not too bad

 Find in table

 Delete from bucket

 Say, delete 12

 Similar run-time as insert

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /



An Alternative to Separate Chaining: Open 

Addressing
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 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /



An Alternative to Separate Chaining: Open 

Addressing
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0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10



An Alternative to Separate Chaining: Open 

Addressing
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0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10



An Alternative to Separate Chaining: Open 

Addressing
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0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10



An Alternative to Separate Chaining: Open 

Addressing

32

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

 Store directly in the array cell (no linked list)

 How to deal with collisions?

 If h(key) is already full, 

 Try (h(key) + 1) % TableSize

 That’s full too?

 Try (h(key) + 2) % TableSize

 How about

 Try (h(key) + 3) % TableSize

 …

 Example: insert 38, 19, 8, 109, 10



Open addressing:  Storing in the table 
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 This is one example of open addressing

 More generally, we just need to describe where to check next 
when one attempt fails (cell already in use)

 Each version of open addressing involves specifying a 
sequence of indices to try

 Trying the next spot is called probing

 In the above example, our ith probe was (h(key) + i) % 
TableSize

 To get the next index to try, we just added 1 (mod the Tablesize)

 This is called linear probing

 More generally we have some probe function f and use 

(h(key) + f(i)) % TableSize

for the ith probe (start at i=0)

 For linear probing, f(i)=i



More about Open Addressing

34

 Find works similarly:
 Keep probing until we find it

 Or, if we hit null, we know it‟s not in the table

 How does open addressing work with high 
load factor ()
 Poorly

 Too many probes means no more O(1)

 So want larger tables

 Find with =1?

 Deletion?  How about we just remove it?
 Take previous example, delete 38

 Then do a find on 8

 Hmm… this isn‟t going to work

 Stick with lazy deletion

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19



Terminology
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We and the book use the terms

 “chaining” or “separate chaining”:  Linked list in each 

bucket

vs.

 “open addressing”:  Store directly in table

Very confusingly,

 “open hashing” is a synonym for “chaining”

vs.

 “closed hashing” is a synonym for “open addressing”



Primary Clustering
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It turns out linear probing is a bad idea, even though the 

probe function is quick to compute (a good thing)

[R. Sedgewick]

Tends to produce 

clusters, which lead 

to long probing 

sequences

Saw this happening in 

earlier example 

• Called primary 

clustering



Analysis of Linear Probing
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 Trivial fact: For any  < 1, linear probing will find an empty 
slot
 It is “safe” in this sense: no infinite loop unless table is full

 Non-trivial facts we won‟t prove:

Average # of probes given  (limit as TableSize → )
 Unsuccessful search:

 Successful search:  

 This is pretty bad: need to leave sufficient empty space in 
the table to get decent performance

  











2
1

1
1

2

1



 












1

1
1

2

1



In a chart
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 Linear-probing performance degrades rapidly as table gets full
 (Formula assumes “large table”)

 By comparison, chaining performance is linear in  and has no 
trouble with >1



Open Addressing: Quadratic probing
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 We can avoid primary clustering by changing the 
probe function

 A common technique is quadratic probing:
 f(i) = i2

 So probe sequence is:
 0th probe:  h(key) % TableSize

 1st probe: (h(key) + 1) % TableSize

 2nd probe: (h(key) + 4) % TableSize

 3rd probe: (h(key) + 9) % TableSize

 …

 ith probe: (h(key) + i2) % TableSize

 Intuition: Probes quickly “leave the neighborhood”



Quadratic Probing Example
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0

1

2

3

4

5

6

7

8

9

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0

1

2

3

4

5

6

7

8

9 89

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example

42

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10

Insert: 

89

18

49

58

79



Quadratic Probing Example
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0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10

Insert: 

89

18

49

58

79

How about 98?



Another Quadratic Probing Example
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TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0

1

2

3

4

5

6



Another Quadratic Probing Example

47

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0

1

2

3

4

5

6 76



Another Quadratic Probing Example

48

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0

1

2

3

4

5 40

6 76



Another Quadratic Probing Example

49

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76



Another Quadratic Probing Example

50

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76



Another Quadratic Probing Example
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TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76



Another Quadratic Probing Example
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TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48                   (48 % 7 = 6)

5                     (  5 % 7 = 5)

55                   (55 % 7 = 6)

47                   (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Uh-oh: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

•Proof uses induction and  (n2+5) % 7 = ((n-7)2+5) % 7

• In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k



From bad news to good news

53

 For all c and k, (n2+c) % k = ((n-k)2+c) % k

 The bad news is: After TableSize quadratic probes, we will 

just cycle through the same indices

 The good news: 

 Assertion #1: If T = TableSize is prime and  < ½, then 

quadratic probing will find an empty slot in at most T/2 probes

 Assertion #2: For prime T and 0  i,j  T/2 where i  j,

(h(key) + i2) % T  (h(key) + j2) % T

That is, if T is prime, the first T/2 quadratic probes map 

to different locations

 Assertion #3: Assertion #2 is the “key fact” for proving 

Assertion #1

 So: If you keep  < ½, no need to detect cycles



Clustering reconsidered
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 Quadratic probing does not suffer from primary 
clustering: quadratic nature quickly escapes the 
neighborhood

 But it‟s no help if keys initially hash to the same 
index
 Called secondary clustering

 Any 2 keys that hash to the same value will have the 
same series of moves after that

 Can avoid secondary clustering with a probe function 
that depends on the key: double hashing



Open Addressing: Double hashing

55

 Idea: 
 Given two good hash functions h and g & 2 different keys k1 & k2, it 

is very unlikely that  h(k1)==h(k2) & g(k1)==g(k2)

 So make the probe function f(i) = i*g(key)

 That is, check h(key), then h(key)+g(key), then h(key)+2*g(key), …

 Even if h(key1)=h(key2), they‟ll most likely go different places for the 
next probe

 Probe sequence:
 0th probe:  h(key) % TableSize

 1st probe:  (h(key) + g(key)) % TableSize

 2nd probe: (h(key) + 2*g(key)) % TableSize

 3rd probe: (h(key) + 3*g(key)) % TableSize

 …

 ith probe: (h(key) + i*g(key)) % TableSize

 Detail: Make sure g(key) isn’t 0

 Why?

 Also, shouldn’t be a multiple of TableSize



Double-hashing analysis

56

 Intuition: Since each probe is “jumping” by g(key) each 
time, we “leave the neighborhood” and “go different 
places from other initial collisions”
 Say h(x)==h(y); it‟s unlikely that g(x)==g(y)

 But we could still have a problem like in quadratic probing 
where we are not “safe” (infinite loop despite room in 
table)
 No guarantee that i*g(key) will let us try all/most indices

 It is known that this infinite loop, despite space available, 
cannot happen in at least one case:
 h(key) = key % p

 g(key) = q – (key % q)

 2 < q < p

 p and q are prime



Yet another reason to use a prime Tablesize
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 So, for double hashing

ith probe:  (h(key) + i*g(key))% TableSize

 Say g(key) divides Tablesize
 That is, there is some integer x such that x*g(key)=Tablesize

 After x probes, we‟ll be back to trying the same indices as 
before

 Ex:
 Tablesize=50

 g(key)=25

 Probing sequence:
 h(key)

 h(key)+25

 h(key)+50=h(key)

 h(key)+75=h(key)+25

 Only 1 & itself divide a prime



More double-hashing facts
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 Assume “uniform hashing” 
 Means probability of g(key1) % p == g(key2) % p is 
1/p

 Non-trivial facts we won‟t prove:

Average # of probes given  (in the limit as 
TableSize → )
 Unsuccessful search (intuitive):

 Successful search (less intuitive):

 Bottom line: unsuccessful bad (but not as bad as 
linear probing), but successful is not nearly as bad
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Charts: Double hashing (w/ uniform 

hashing) vs. Linear probing
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We’ve explored different methods of collision 

detection
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 Chaining is easy

 find, delete proportion to load factor on average; insert 

constant

 Open addressing uses probe functions, has clustering issues as 

table gets full

 Why use it:

 Less memory allocation

 Some run-time overhead for allocating linked list (or whatever) 

nodes; open addressing could be faster

 Arguably easier data representation

 Now: 

 Growing the table when it gets too full: Called „rehashing‟

 Relation between hashing/comparing and connection to Java



Rehashing
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 Like with array-based stacks/queues/lists, if table gets 
too full, create a bigger table and copy everything over

 With chaining, we get to decide what “too full” means
 Keep load factor reasonable (e.g., < 1)?

 Consider average or max size of non-empty chains?

 For open addressing, half-full is a good rule of thumb

 New table size
 Twice-as-big is a good idea, except…

 That won‟t be prime!

 So go about twice-as-big 

 Can have a list of prime numbers in your code since you 
won‟t grow more than 20-30 times

 If you do need more primes, not too bad to calculate



More on rehashing
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 What if we copy all data to the same indices in the new 
table?

 Not going to work; calculated index based on TableSize – we 
may not be able to find it later

 Go through current table, do standard insert for each into 
new table; run-time?

 O(n):  Iterate through table

 But resize is an O(n) operation, involving n calls to the 
hash function (1 for each insert in the new table)

 Is there some way to avoid all those hash function calls again?

 Space/time tradeoff: Could store h(key) with each data item, 
but since rehashing is rare, this is probably a poor use of space

 And growing the table is still O(n); only helps by a constant factor



Hashing and comparing
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 For insert/find, as we go through the chain or keep probing, we 
have to compare each item we see to the key we‟re looking for
 We need to have a comparator (or key‟s type needs to be 

comparable)

 Don‟t actually need < & >; just =

 So a hash table needs a hash function and a comparator
 In Project 2, you‟ll use two function objects

 The Java standard library uses a more OO approach where each 
object has an equals method and a hashCode method:

class Object { 

boolean equals(Object o) {…}

int hashCode() {…}

…

}



Equal objects must hash the same
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 The Java library (and your project hash table) make a 

very important assumption that clients must satisfy…

 OO way of saying it:

If a.equals(b), then we must require 

a.hashCode()==b.hashCode()

 Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

 What would happen if we didn’t do this?



Java bottom line
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 Lots of Java libraries use hash tables, perhaps 

without your knowledge

 So: If you ever override equals, you need to 

override hashCode also in a consistent way



(Incorrect) Example
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 Think about using a hash table holding points
class PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle(double theta2) { theta+=theta2; }
…
boolean equals(Object otherObject) {

if(this==otherObject) return true;
if(otherObject==null) return false;
if(getClass()!=other.getClass()) return false;
PolarPoint other = (PolarPoint)otherObject;
double angleDiff = 

(theta – other.theta) % (2*Math.PI);
double rDiff = r – other.r;
return Math.abs(angleDiff) < 0.0001

&& Math.abs(rDiff) < 0.0001;
}
// wrong: must override hashCode!

}



Aside: Comparable/Comparator have rules 

too
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Comparison must impose a consistent, total ordering:

For all a, b, and c,

 If compare(a,b) < 0, then compare(b,a) > 0

 If compare(a,b) == 0, then compare(b,a) == 0

 If compare(a,b) < 0 and compare(b,c) < 0,                        

then compare(a,c) < 0

What would happen if compareTo() just randomly 

returned -1, 0 or 1?



Final word on hashing
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 The hash table is one of the most important data structures
 Supports only find, insert, and delete efficiently

 FindMin, FindMax, predecessor, etc.: not so efficiently

 Most likely data-structure to be asked about in interviews; many 
real-world applications

 Important to use a good hash function
 Good distribution

 Uses enough of key‟s values

 Important to keep hash table at a good size
 Prime #

 Preferable  depends on type of table

 Side-comment: hash functions have uses beyond hash tables
 Examples: Cryptography, check-sums


