
CSE332: Data Abstractions

Lecture 10: More B-Trees

Tyler Robison

Summer 2010

1

B-Tree Review: Another dictionary

2

 Overall idea:

 Large data sets won’t fit entirely in memory

 Disk access is slow

 Set up tree so we do one disk access per node in tree

 Then our goal is to keep tree shallow as possible

 Balanced binary tree is a good start, but we can do better

than log2n height

 In an M-ary tree, height drops to logMn

 Why not set M really really high? Height 1 tree…

 Instead, set M so that each node fits in a disk block

B-Tree Review

3

 M-ary tree with room for L data
items at each leaf

 All data kept at leaves

 Order property:
Subtree between keys x and y

contains only data that is  x
and < y (notice the )

 Balance property:
All nodes and leaves at least half

full, and all leaves at same height

 find and insert efficient
 insert uses splitting to handle

overflow, which may require
splitting parent, and so on
recursively

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M=3, L=3

Horizontal: Internal, Vertical: Leaf

There are different variants of B-Trees you

can use (adoption, etc.)

Insert(16)3

14

15

18

30

18 32

32

36

M = 3 L = 3

3

14

15

18

30

18 32

32

36

16

18

30

18 32

32

36

3

14

15

16

15

4

15 32

18 What

now?

Split the internal node

(in this case, the root)

B-Tree Insertion Example

B-Tree Insertion Algorithm Overview

5

1. Traverse from the root to the proper leaf. Insert the

data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!

 Split the leaf into two leaves:

 Attach the new child to the parent

3. If an internal node has M+1 children, overflow!

 Split the node into two nodes

 Attach the new child to the parent

Splitting at a node (step 3) could make the parent overflow

too

 So repeat step 3 up the tree until a node doesn’t overflow

 If the root overflows, make a new root with two children

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

And Now for Deletion…

6

M = 3 L = 3

3

12

14

15

16

15

18

30

40

18

40

45

36

38

36

Easy case: Leaf still has enough data; just remove

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

16

16

18

30

36 40

36

38

18

40

45

Underflow in the leaf

7

3

12

14

16

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

16

16

18

30

36 40

36

38

18

40

45

8

Adoption: grab a data item from

neighboring leaf

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

14

18

30

36 40

36

38

18

40

45

3

12

14

Uh-oh, neighbors at their

minimum!
9

M = 3 L = 3

14

18

30

36 40

36

38

18

40

45

3

12

14 3

12

14

18

30

36 40

36

38

18

40

45

Merge the two nodes together. This causes

underflow in the parent

10

3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

18

18

30

40

36

38

36

40

45

11

Now grab a leaf node from parent’s neighbor

Delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

12

Easy case again

Delete(18)

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

3

12

18

30

40

36

38

36

40

45

13

Leaf underflow; no neighbors with enough to

steal from…

3

12

30

40

36

38

36

40

45

M = 3 L = 3

3

12

18

30

40

36

38

36

40

45

14

Merge leaves…

3

12

30

40

36

38

36

40

45

36 40

3

12

30

3

36

38

40

45

M = 3 L = 3

15

Can’t steal leaf from parent’s neighbor; too few

leaves. Instead merge parent w/ parent’s neighbor

36 40

3

12

30

36

38

40

45

M = 3 L = 3

36 40

3

12

30

3

36

38

40

45

16

Which causes an underflow in root; replace

root

Deletion Algorithm

17

1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!

 If a neighbor has > L/2 items, adopt and update
parent

 Else merge node with neighbor

 Guaranteed to have a legal number of items

 Parent now has one less node

3. If step (2) caused the parent to have M/2 - 1

children, underflow!

 …

Deletion algorithm continued

18

3. If an internal node has M/2 - 1 children

 If a neighbor has > M/2 items, adopt and update
parent

 Else merge node with neighbor

 Guaranteed to have a legal number of items

 Parent now has one less node, may need to continue
up the tree

If we merge all the way up through the root, that’s
fine unless the root went from 2 children to 1
 In that case, delete the root and make child the root

 This is the only case that decreases tree height

Efficiency of delete

19

 Find correct leaf:

 Remove from leaf:

 Adopt/merge from/with neighbor leaf:

 Adopt or merge all the way up to root:

Worst-case Delete: O(L + M logM n)

But it’s not that bad:
 Merges are not that common

 Remember disk accesses were the name of the game:

O(logM n)

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

Insert vs delete comparison

20

Insert

 Find correct leaf:

 Insert in leaf:

 Split leaf:

 Split parents all the way up to root:

Delete

 Find correct leaf:

 Remove from leaf:

 Adopt/merge from/with neighbor leaf:

 Adopt or merge all the way up to root:

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

Aside: Limitations of B-Trees in Java

21

For most of our data structures, we have encouraged

writing high-level, reusable code, such as in Java with

generics

It is worth knowing enough about “how Java works” to

understand why this is probably a bad idea for B-Trees

 Assuming our goal is efficient number of disk accesses

 Java has many advantages, but it wasn’t designed for this

 If you just want a balanced tree with worst-case logarithmic

operations, no problem

The problem is extra levels of indirection…

One approach

22

Even if we assume data items have int keys, you cannot
get the data representation you want for “really big data”

interface Keyed<E> {
int key(E);

}
class BTreeNode<E implements Keyed<E>> {
static final int M = 128;
int[] keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;
…

}
class BTreeLeaf<E> {
static final int L = 32;
E[] data = (E[])new Object[L];
int numItems = 0;
…

}

What that looks like

23

BTreeNode (3 objects with “header words”)

M-1 122045

M

70

BTreeLeaf (data objects not in contiguous memory)

20

… (larger array)

… (larger array)

L … (larger array)

All the red references indicate

unnecessary indirection

The moral

24

 The whole idea behind B trees was to keep related
data in contiguous memory

 But that’s “the best you can do” in Java
 Again, the advantage is generic, reusable code

 But for your performance-critical web-index, not the way
to implement your B-Tree for terabytes of data

 C# may have better support for “flattening objects
into arrays”
 C and C++ definitely do

 Levels of indirection matter!

Conclusion: Balanced Trees

25

 Balanced trees make good dictionaries because they
guarantee logarithmic-time find, insert, and
delete

 Essential and beautiful computer science

 But only if you can maintain balance within the time bound

 AVL trees maintain balance by tracking height and
allowing all children to differ in height by at most 1

 B trees maintain balance by keeping nodes at least
half full and all leaves at same height

 Other great balanced trees (see text for details)
 Splay trees: self-adjusting; amortized guarantee; no extra

space for height information

 Red-black trees: all leaves have depth within a factor of 2

