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B-Tree Review: Another dictionary
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 Overall idea:

 Large data sets won’t fit entirely in memory

 Disk access is slow

 Set up tree so we do one disk access per node in tree

 Then our goal is to keep tree shallow as possible

 Balanced binary tree is a good start, but we can do better 

than log2n height

 In an M-ary tree, height drops to logMn

 Why not set M really really high?  Height 1 tree…

 Instead, set M so that each node fits in a disk block



B-Tree Review
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 M-ary tree with room for L data 
items at each leaf

 All data kept at leaves

 Order property:
Subtree between keys x and y

contains only data that is  x
and < y (notice the )

 Balance property:
All nodes and leaves at least half 

full, and all leaves at same height

 find and insert efficient
 insert uses splitting to handle 

overflow, which may require 
splitting parent, and so on 
recursively
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Horizontal: Internal, Vertical: Leaf

There are different variants of B-Trees you 

can use (adoption, etc.)



Insert(16)3
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Split the internal node 

(in this case, the root)

B-Tree Insertion Example



B-Tree Insertion Algorithm Overview
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1. Traverse from the root to the proper leaf.  Insert the 

data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!

 Split the leaf into two leaves:

 Attach the new child to the parent

3. If an internal node has M+1 children, overflow!

 Split the node into two nodes

 Attach the new child to the parent

Splitting at a node (step 3) could make the parent overflow 

too

 So repeat step 3 up the tree until a node doesn’t overflow

 If the root overflows, make a new root with two children



Delete(32)
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And Now for Deletion…
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M = 3 L = 3
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Delete(15)
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Underflow in the leaf
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Adoption: grab a data item from 

neighboring leaf



Delete(16)
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M = 3 L = 3
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Merge the two nodes together.  This causes 

underflow in the parent
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Now grab a leaf node from parent’s neighbor 



Delete(14)
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Easy case again



Delete(18)
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Leaf underflow; no neighbors with enough to 

steal from…
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Merge leaves…
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Can’t steal leaf from parent’s neighbor; too few 

leaves. Instead merge parent w/ parent’s neighbor
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Which causes an underflow in root; replace 

root 



Deletion Algorithm
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1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!

 If a neighbor has >  L/2 items, adopt and update 
parent

 Else merge node with neighbor

 Guaranteed to have a legal number of items

 Parent now has one less node

3. If step (2) caused the parent to have M/2 - 1

children, underflow!

 …



Deletion algorithm continued

18

3. If an internal node has M/2 - 1 children

 If a neighbor has >  M/2 items, adopt and update 
parent

 Else merge node with neighbor

 Guaranteed to have a legal number of items

 Parent now has one less node, may need to continue 
up the tree

If we merge all the way up through the root, that’s 
fine unless the root went from 2 children to 1
 In that case, delete the root and make child the root

 This is the only case that decreases tree height



Efficiency of delete
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 Find correct leaf:

 Remove from leaf:

 Adopt/merge from/with neighbor leaf:

 Adopt or merge all the way up to root:

Worst-case Delete: O(L + M logM n)

But it’s not that bad:
 Merges are not that common

 Remember disk accesses were the name of the game:

O(logM n)

O(log2 M logM n)

O(L)

O(L)

O(M logM n)



Insert vs delete comparison
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Insert

 Find correct leaf:

 Insert in leaf:

 Split leaf:

 Split parents all the way up to root:

Delete

 Find correct leaf:

 Remove from leaf:

 Adopt/merge from/with neighbor leaf:

 Adopt or merge all the way up to root:

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

O(log2 M logM n)

O(L)

O(L)

O(M logM n)



Aside: Limitations of B-Trees in Java
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For most of our data structures, we have encouraged 

writing high-level, reusable code, such as in Java with 

generics

It is worth knowing enough about “how Java works” to 

understand why this is probably a bad idea for B-Trees

 Assuming our goal is efficient number of disk accesses

 Java has many advantages, but it wasn’t designed for this

 If you just want a balanced tree with worst-case logarithmic 

operations, no problem

The problem is extra levels of indirection…



One approach
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Even if we assume data items have int keys, you cannot 
get the data representation you want for “really big data” 

interface Keyed<E> {
int key(E);

}
class BTreeNode<E implements Keyed<E>> {
static final int M = 128;
int[] keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;
…

}
class BTreeLeaf<E> {
static final int L = 32;
E[] data = (E[])new Object[L];
int numItems = 0;
…

}



What that looks like
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BTreeNode (3 objects with “header words”)

M-1 122045

M

70

BTreeLeaf (data objects not in contiguous memory)
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… (larger array)

… (larger array)

L … (larger array)

All the red references indicate 

unnecessary indirection



The moral
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 The whole idea behind B trees was to keep related 
data in contiguous memory

 But that’s “the best you can do” in Java
 Again, the advantage is generic, reusable code

 But for your performance-critical web-index, not the way 
to implement your B-Tree for terabytes of data

 C# may have better support for “flattening objects 
into arrays”
 C and C++ definitely do

 Levels of indirection matter!



Conclusion: Balanced Trees
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 Balanced trees make good dictionaries because they 
guarantee logarithmic-time find, insert, and 
delete

 Essential and beautiful computer science

 But only if you can maintain balance within the time bound

 AVL trees maintain balance by tracking height and 
allowing all children to differ in height by at most 1

 B trees maintain balance by keeping nodes at least 
half full and all leaves at same height

 Other great balanced trees (see text for details)
 Splay trees: self-adjusting; amortized guarantee; no extra 

space for height information

 Red-black trees: all leaves have depth within a factor of 2


