

1

CSE332: Data Abstractions

Lecture 10: More B-Trees

Tyler Robison

Summer 2010

B-Tree Review: Another dictionary

• Overall idea:

- Large data sets won't fit entirely in memory
- Disk access is slow
- Set up tree so we do one disk access per node in tree
- Then our goal is to keep tree shallow as possible
- Balanced binary tree is a good start, but we can do better than log₂n height
- ▶ In an M-ary tree, height drops to log_Mn
 - Why not set M really really high? Height 1 tree...
 - Instead, set M so that each node fits in a disk block

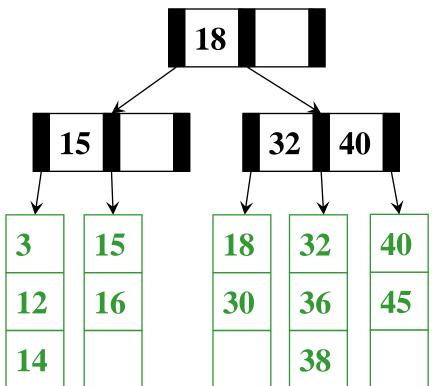
There are different variants of B-Trees you can use (adoption, etc.)

B-Tree Review

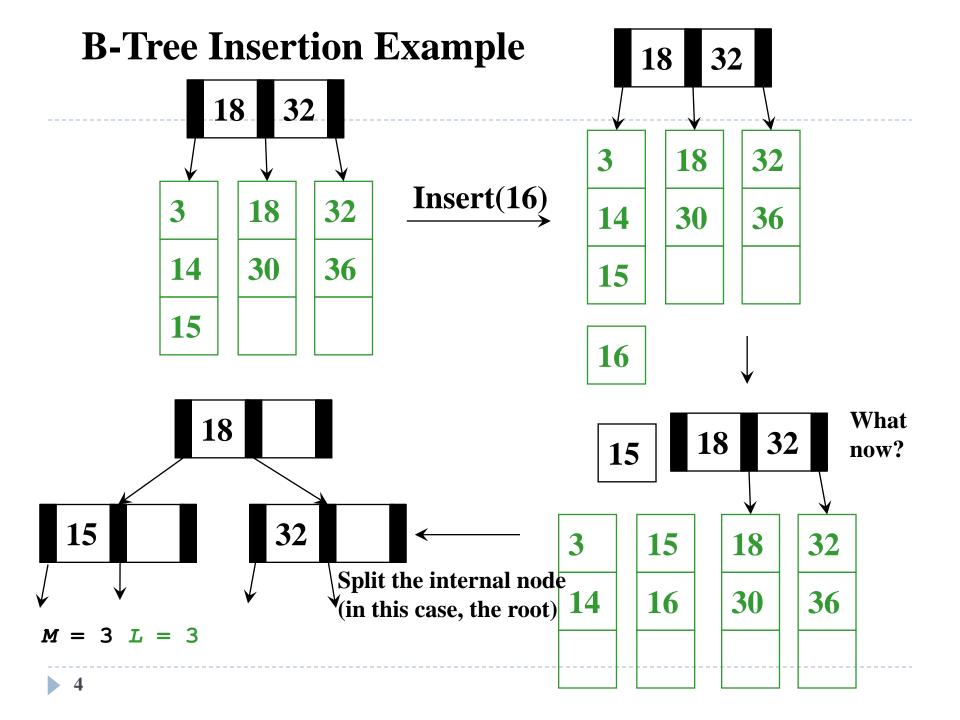
- M-ary tree with room for L data items at each leaf
- All data kept at leaves
- Order property:
 Subtree between keys x and y contains only data that is ≥ x and < y (notice the ≥)
- Balance property:

All nodes and leaves at least half full, and all leaves at same height

- find and insert efficient
 - insert uses splitting to handle overflow, which may require splitting parent, and so on recursively



M=3, L=3 Horizontal: Internal, Vertical: Leaf



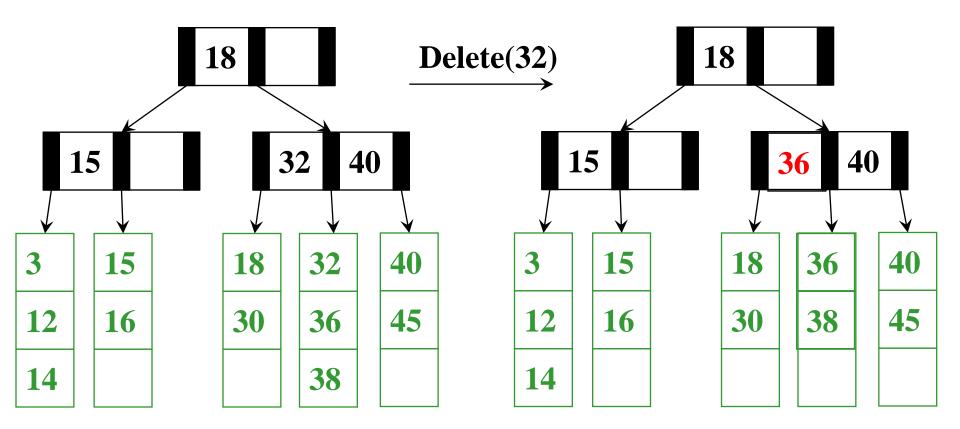
B-Tree Insertion Algorithm Overview

- 1. Traverse from the root to the proper leaf. Insert the data in its leaf in sorted order
- 2. If the leaf now has *L*+1 items, *overflow!*
 - Split the leaf into two leaves:
 - Attach the new child to the parent
- 3. If an internal node has M+1 children, overflow!
 - Split the node into two nodes
 - Attach the new child to the parent

Splitting at a node (step 3) could make the parent overflow too

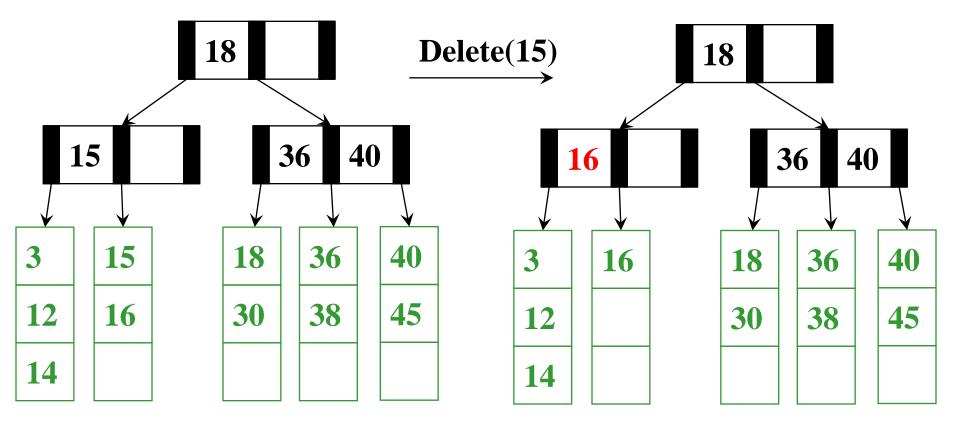
- So repeat step 3 up the tree until a node doesn't overflow
- If the root overflows, make a new root with two children

And Now for Deletion...

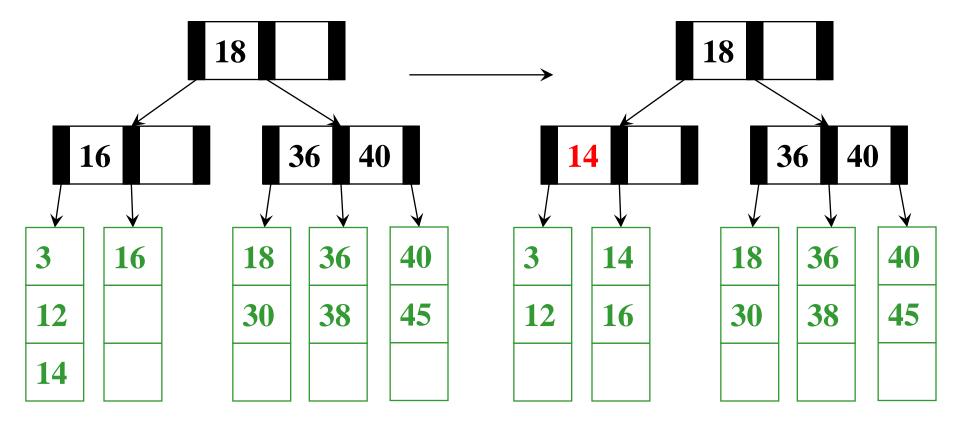


Easy case: Leaf still has enough data; just remove M = 3 L = 3

6

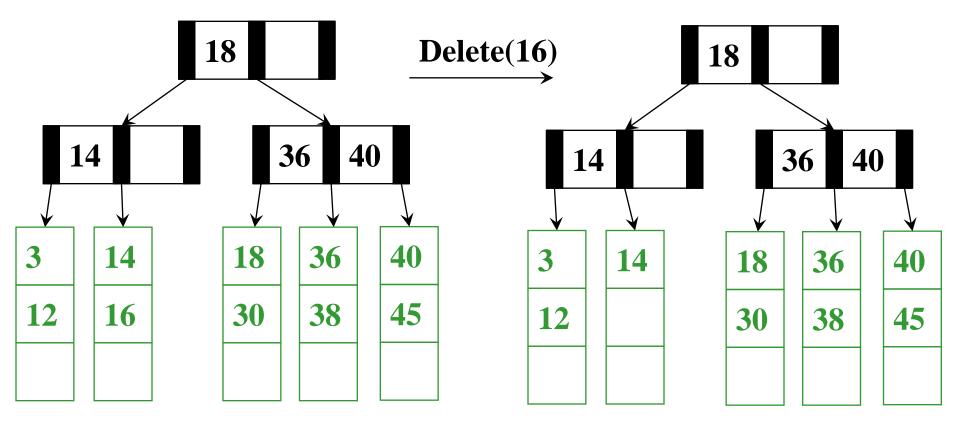


Underflow in the leaf

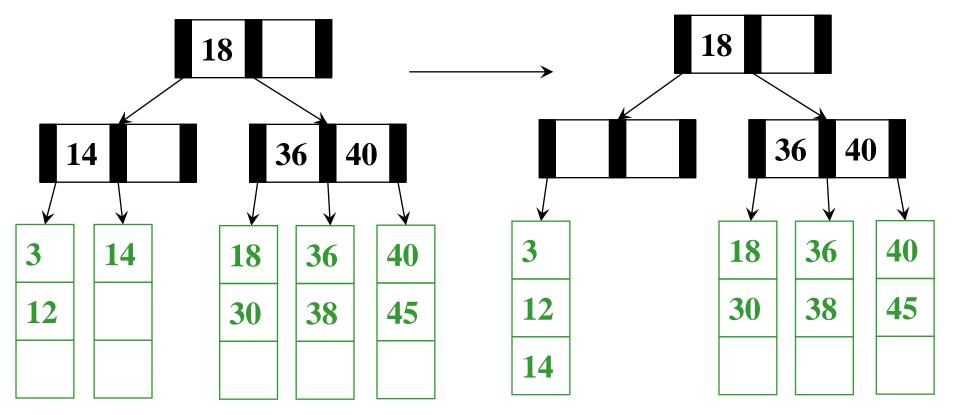


Adoption: grab a data item from neighboring leaf

8

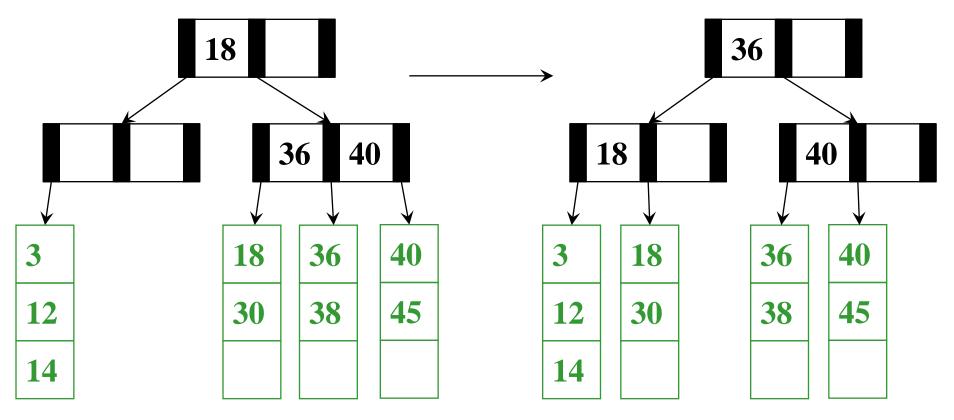


Uh-oh, neighbors at their minimum!



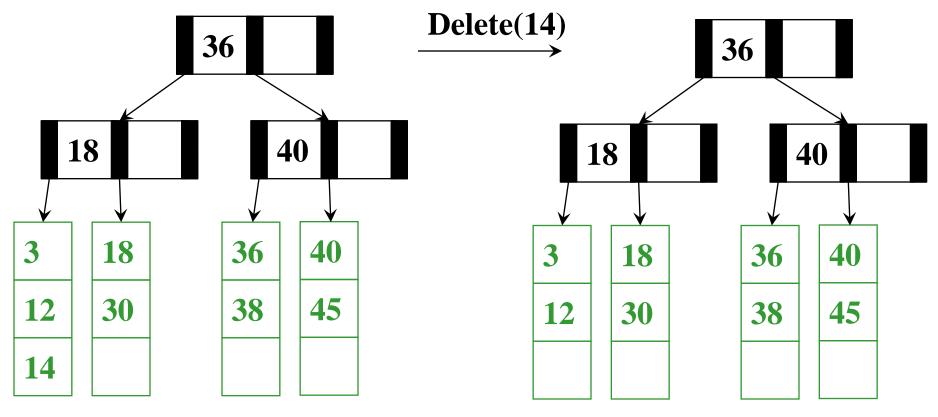
Merge the two nodes together. This causes underflow in the parent

10

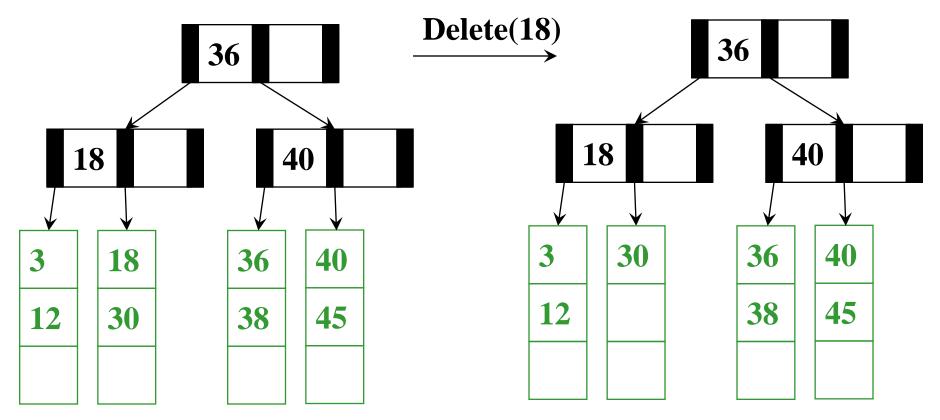


Now grab a leaf node from parent's neighbor

M = 3 L = 3 ▶ 11

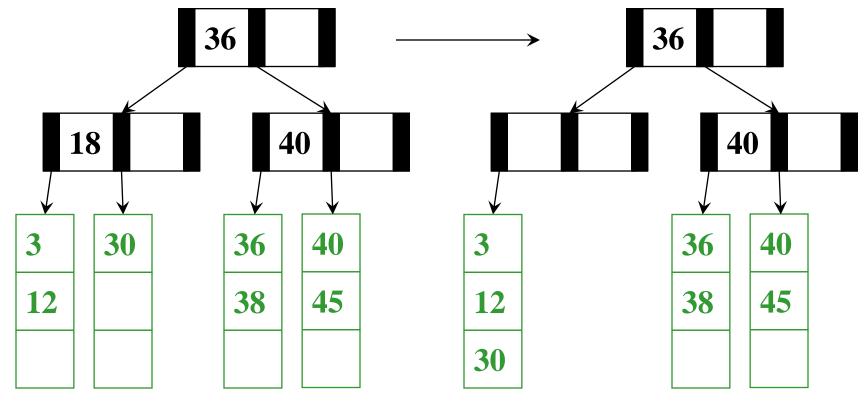


Easy case again

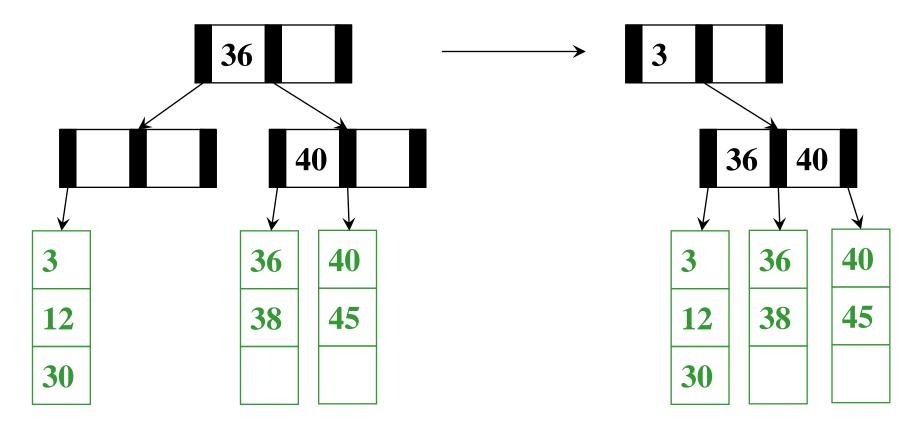


Leaf underflow; no neighbors with enough to steal from...

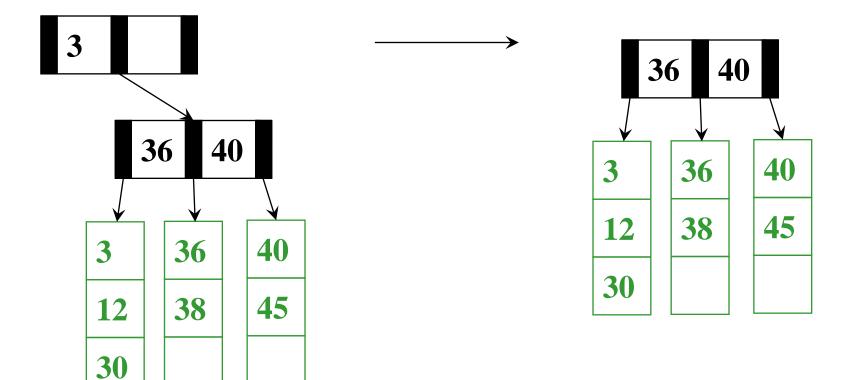
13



Merge leaves...



Can't steal leaf from parent's neighbor; too few leaves. Instead merge parent w/ parent's neighbor



Which causes an underflow in root; replace root

16

Deletion Algorithm

1. Remove the data from its leaf

- 2. If the leaf now has $\lceil L/2 \rceil 1$, underflow!
 - If a neighbor has > [L/2] items, adopt and update parent
 - Else merge node with neighbor
 - Guaranteed to have a legal number of items
 - Parent now has one less node
- If step (2) caused the parent to have [M/2] − 1 children, underflow!

Deletion algorithm continued

- 3. If an internal node has $\lceil M/2 \rceil 1$ children
 - If a neighbor has > $\lceil M/2 \rceil$ items, *adopt* and update parent
 - Else *merge* node with neighbor
 - Guaranteed to have a legal number of items
 - Parent now has one less node, may need to continue up the tree

If we merge all the way up through the root, that's fine unless the root went from 2 children to 1

- In that case, delete the root and make child the root
- This is the only case that decreases tree height

Efficiency of delete

- Find correct leaf:
- Remove from leaf:
- Adopt/merge from/with neighbor leaf:
- Adopt or merge all the way up to root:

```
O(\log_2 M \log_M n)O(L)O(L)O(M \log_M n)
```

Worst-case Delete: $O(L + M \log_M n)$

But it's not that bad:

- Merges are not that common
- Remember disk accesses were the name of the game: O(log_M n)

Insert vs delete comparison

Insert

- Find correct leaf:
- Insert in leaf:
- Split leaf:
- Split parents all the way up to root:

Delete

- Find correct leaf:
- Remove from leaf:
- Adopt/merge from/with neighbor leaf:
- Adopt or merge all the way up to root:

 $\begin{array}{l} O(\log_2 M \log_M n) \\ O(L) \\ O(L) \\ O(M \log_M n) \end{array}$

 $\begin{array}{l} O(\log_2 M \log_M n) \\ O(L) \\ O(L) \\ O(M \log_M n) \end{array}$

Aside: Limitations of B-Trees in Java

For most of our data structures, we have encouraged writing high-level, reusable code, such as in Java with generics

- It is worth knowing enough about "how Java works" to understand why this is probably a bad idea for B-Trees
 - Assuming our goal is efficient number of disk accesses
 - Java has many advantages, but it wasn't designed for this
 - If you just want a balanced tree with worst-case logarithmic operations, no problem

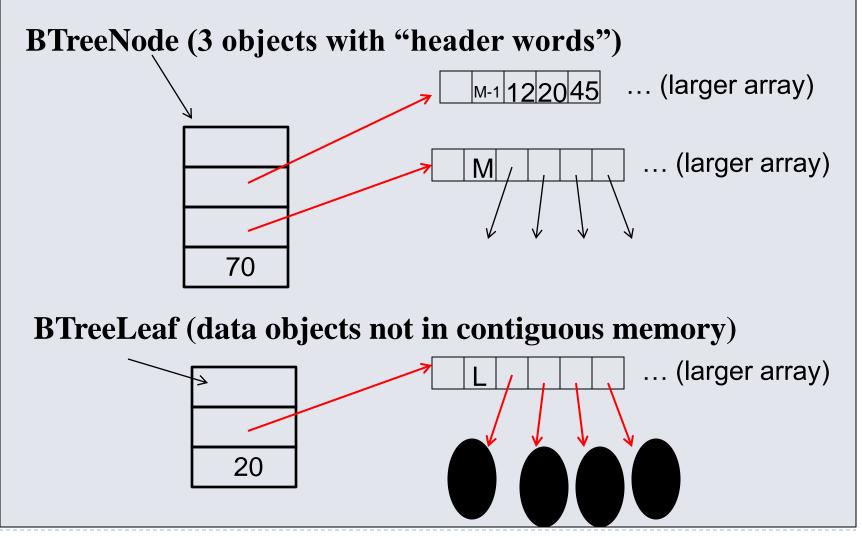
The problem is extra levels of indirection...

One approach

Even if we assume data items have int keys, you cannot get the data representation you want for "really big data"

```
interface Keyed<E> {
 int key(E);
}
class BTreeNode<E implements Keyed<E>> {
  static final int M = 128;
  int[] keys = new int[M-1];
 BTreeNode<E>[] children = new BTreeNode[M];
  int numChildren = 0;
  ...
}
class BTreeLeaf<E> {
  static final int L = 32;
 E[] data = (E[])new Object[L];
  int numItems = 0;
  ...
```

All the red references indicateWhat that looks likeunnecessary indirection



The moral

- The whole idea behind B trees was to keep related data in contiguous memory
- But that's "the best you can do" in Java
 - > Again, the advantage is generic, reusable code
 - But for your performance-critical web-index, not the way to implement your B-Tree for terabytes of data
- C# may have better support for "flattening objects into arrays"
 - C and C++ definitely do
- Levels of indirection matter!

Conclusion: Balanced Trees

- Balanced trees make good dictionaries because they guarantee logarithmic-time find, insert, and delete
 - Essential and beautiful computer science
 - But only if you can maintain balance within the time bound
- AVL trees maintain balance by tracking height and allowing all children to differ in height by at most 1
- B trees maintain balance by keeping nodes at least half full and all leaves at same height
- Other great balanced trees (see text for details)
 - Splay trees: self-adjusting; amortized guarantee; no extra space for height information
 - Red-black trees: all leaves have depth within a factor of 2