
CSE332: Data Abstractions

Lecture 1: Introduction; Stacks/Queues

Tyler Robison

Summer 2010



Welcome to 332!

What we‟re going to be doing this quarter:
 Study many common data structures & algorithms that 

underlie most computer systems, for instance:

 Btrees -> Databases

 Queues -> Printer queue

 Stacks -> Program call-stack

 Hashtables, sorting algorithms, graphs, etc.

 Learn to rigorously analyze them and think carefully 
about what to use when: Uses, limitations, efficiency, 
etc.

 Asymptotic analysis -> shows up everywhere in CS

 Study the increasingly important areas of parallelism 
and concurrency, and relevance to algorithms/data-
structures



Today in class:

 Course mechanics

 What this course is about

 How it differs from 326

 Abstract Data Types

 Start (finish?) stacks and queues (largely review)



About us

Course Staff:

Tyler Robison Sandra Fan

Office hours:

Wednesday 2:00-3:00 & 

by appointment

Room: CSE 212

Office hours:

Thursday 12:00-1:00

Room: CSE 218



To-do

Your to-do:

 Make sure you get mail sent to 

cse332a_su10 at u.washington.edu

 Read all course policies

 Read/skim Chapters 1 and 3 of Weiss book

 Relevant to Project 1, due next week (don‟t worry; it‟s not too bad)

 Relevant to Hw 1, due next week

 Will start Chapter 2 on Wednesday

 Possibly set up your Eclipse / Java environment for the first 
project 

 Thursday‟s section will help

 Check out the website:

http://www.cs.washington.edu/education/courses/cse332/10su/



Staying in touch

 Course email list: cse332a_su10@u
 Students and staff already subscribed (in theory – let me know)

 Used for announcements

 Fairly low traffic

 Course staff: cse332-staff@cs to send to both Sandra & 
myself
 Questions, comments, etc.

 Message Board
 Posing questions, discussing material

 Sandra & I will try to check it on a regular basis

 Anonymous feedback link on webpage
 For good and bad: if you don‟t tell me, I don‟t know



Course materials

 Lectures:
 First exposure to material

 Presentation of algorithms, proofs, etc.

 Provide examples, asides

 Section:
 Programming details (Eclipse, generics, junit, ForkJoin

framework)

 Practice with algorithms: Given the stuff we‟re going to cover, 
practice is definitely important

 Main Textbook: Weiss 2nd Edition in Java

 Optional Textbook: Core Java book: A good Java reference 
(there may be others)

 Parallelism/Concurrency material not in either book (or any 
appropriate one)
 However, Dan Grossman wrote up excellent slides and notes for 

those topics



Course Work

 7 to 8 written/typed homeworks (25%)

 Due at beginning of class each Friday (but not this week)

 No late homework, please
 Even if you don‟t have time to do it all, turn in something – some credit is better 

than no credit

 3 programming projects (some with phases) (25%)

 Use Java and Eclipse (see this week‟s section)

 You‟ve got one 24-hour late-day for the quarter

 First project due next week (rather lighter than the others)

 Projects 2 and 3 will allow partners; use of SVN encouraged

 Midterm: July 19th (20%)

 Final: August 20th (25%)

 5% to your strongest above



Collaboration and Academic Integrity

 Working together is fine – even encouraged – but 

keep discussions at a high level, and always prepare 

your own solutions

 Read the course policy (on the website)

 Explains how you can and cannot get/provide help on 

homework and projects



How 332 differs from 326

 332 is about 70% of the material from 326
 Covers the same general topics, and the important 

algorithms/data-structures

 Cuts out some of the alternative data-structures, and 
some less important ones

 You can probably live a full & meaningful life without knowing 
what a binomial queue is

 Biggest new topic: a serious treatment of 
programming with multiple threads

 For parallelism: To use multiple processors to finish 
sooner

 For concurrency: Allow properly synchronized access to 
shared resources



Data structures

(Often highly non-obvious) ways to organize information in 
order to enable efficient computation over that 
information

 Key goal over the next week is introducing asymptotic analysis
to precisely and generally describe efficient use of time and 
space

 „Big Oh‟ notation used frequently in CS: O(n), O(logn), O(1), etc.

A data structure supports certain operations, each with a:

 Purpose: what does the operation do/return

 Performance: how efficient is the operation

Examples:
 List with operations insert and delete

 Stack with operations push and pop



Trade-offs

A data structure strives to provide many useful, efficient 
operations

Often no clear-cut „best‟: there are usually trade-offs:
 Time vs. space

 One operation more efficient if another less efficient

 Generality vs. simplicity vs. performance

That is why there are many data structures and 
educated CSEers internalize their main trade-offs and 
techniques
 Recognize the right tool for the job

 And recognize logarithmic < linear < quadratic < exponential



Terminology

 Abstract Data Type (ADT)
 Mathematical description of a “thing” with set of operations 

on that “thing”; doesn‟t specify the details of how it‟s done
 Ex, Stack: You push stuff and you pop stuff
 Could use an array, could use a linked list

 Algorithm
 A high level, language-independent description of a step-

by-step process
 Ex: Binary search

 Data structure
 A specific family of algorithms & data for implementing an 

ADT
 Ex: Linked list stack

 Implementation of a data structure
 A specific implementation in a specific language



Example: Stacks

 The Stack ADT supports operations:
 isEmpty: initially true, later have there been same number of 

pops as pushes

 push: takes an item

 pop: raises an error if isEmpty, else returns most-recently 
pushed item not yet returned by a pop

 … (Often some more operations)

 A Stack data structure could use a linked-list or an array 
or something else, and associated algorithms for the 
operations

 One implementation is in the library java.util.Stack



Why ADT is a useful abstraction

The Stack ADT is a useful abstraction because:

 It arises all the time in programming (see text for 

more)

 Recursive function calls

 Balancing symbols (parentheses)

 Evaluating postfix notation: 3 4 + 5 * 

 Common ideas; code up a reusable library

 We can communicate in high-level terms

 “Use a stack and push numbers, popping for operators…”

 Rather than, “create a linked list and add a node when…”

 We as humans think in abstractions



The Queue ADT

 Operations

enqueue

dequeue

is_empty

create

destroy

 Just like a stack except:

 Stack: LIFO (last-in-first-out)

 Queue: FIFO (first-in-first-out)

 Just as useful and ubiquitous

F E D C B
enqueue dequeue

G A



Circular Array Queue Data Structure

 What if queue is empty?

 Enqueue?

 Dequeue?

 What if array is full?

 How to test for empty?

 What is the complexity of 
the operations?

 Can you find the kth

element in the queue?

// Basic idea only!

enqueue(x) {

Q[back] = x;

back = (back + 1) % size

}

// Basic idea only!

dequeue() {

x = Q[front];

front = (front + 1) % size;

return x;

}

b c d e f

Q: 0 size - 1

front back



Linked List Queue Data Structure

 What if queue is empty?

 Enqueue?

 Dequeue?

 Can list be full?

 How to test for empty?

 What is the complexity of 
the operations?

 Can you find the kth

element in the queue?

b c d e f

front back

// Basic idea only!

enqueue(x) {

back.next = new Node(x);

back = back.next;

}

// Basic idea only!

dequeue() {

x = front.item;

front = front.next;

return x;

}



Circular Array vs. Linked List

Array:

– May waste unneeded space or 
run out of space

– Space per element excellent

– Operations very simple / fast

– Constant-time access to kth

element

– For operation insertAtPosition, 
must shift all later elements
– Not in Queue ADT

List:

– Always just enough space

– But more space per element

– Operations very simple / fast

– No constant-time access to kth

element

– For operation insertAtPosition

must traverse all earlier elements

– Not in Queue ADT



The Stack ADT

 Operations

create

destroy

push

pop

top (also ‘peek’)

is_empty

 Can also be implemented with an array or a linked list
 This is Project 1!

 Like queues, type of elements is irrelevant
 Ideal for Java‟s generic types (covered in section; important for 

project 1)

A

B

C

D

E

F

E D C B A

F


