CSE332: Data Abstractions

Lecture 1: Introduction; Stacks/Queues

Tyler Robison
Summer 2010

Welcome to 332!

What we're going to be doing this quarter:
Study many common data structures & algorithms that
underlie most computer systems, for instance:

Btrees -> Databases

Queues -> Printer queue

Stacks -> Program call-stack

Hashtables, sorting algorithms, graphs, etc.

Learn to rigorously analyze them and think carefully
about what to use when: Uses, limitations, efficiency,
etc.

Asymptotic analysis -> shows up everywhere in CS
Study the increasingly important areas of parallelism
and concurrency, and relevance to algorithms/data-
structures

Today in class:

» Course mechanics

» What this course is about
How It differs from 326

» Abstract Data Types
» Start (finish?) stacks and queues (largely review)

About us

Course Staff:
Tyler Robison Sandra Fan

Office hours: Office hours:
Wednesday 2:00-3:00 & Thursday 12:00-1:00
by appointment Room: CSE 218

Room: CSE 212

To-do

Your to-do:

» Make sure you get mail sent to
cse332a_sulO at u.washington.edu

» Read all course policies

» Read/skim Chapters 1 and 3 of Weiss book

Relevant to Project 1, due next week (don’t worry; it's not too bad)
Relevant to Hw 1, due next week
Will start Chapter 2 on Wednesday

» Possibly set up your Eclipse / Java environment for the first
project
Thursday’s section will help
» Check out the website:

http://www.cs.washington.edu/education/courses/cse332/10su/

Staying in touch

» Course email list: cse332a_sulO@u
Students and staff already subscribed (in theory — let me know)
Used for announcements
Fairly low traffic

» Course staff: cse332-staff@cs to send to both Sandra &
myself

Questions, comments, etc.

» Message Board
Posing questions, discussing material
Sandra & | will try to check it on a regular basis

» Anonymous feedback link on webpage
For good and bad: if you don't tell me, | don’t know

Course materials

» Lectures:
First exposure to material
Presentation of algorithms, proofs, etc.
Provide examples, asides

» Section:

Programming details (Eclipse, generics, junit, ForkJoin
framework)

Practice with algorithms: Given the stuff we're going to cover,
practice is definitely important

» Main Textbook: Weiss 2" Edition in Java

» Optional Textbook: Core Java book: A good Java reference
(there may be others)

» Parallelism/Concurrency material not in either book (or any
appropriate one)

However, Dan Grossman wrote up excellent slides and notes for
those topics

Course Work

» 7 to 8 written/typed homeworks (25%)
Due at of class each Friday (but not this week)

No late homework, please

Even if you don’t have time to do it all, turn in something — some credit is better
than no credit

3 programming projects (some with phases) (25%)
Use Java and Eclipse (see this week’s section)
You've got one 24-hour late-day for the quarter
First project due next week (rather lighter than the others)
Projects 2 and 3 will allow partners; use of SVN encouraged
Midterm: July 19th (20%)
Final: August 20th (25%)

5% to your strongest above

v

v v v

Collaboration and Academic Integrity

» Working together is fine — even encouraged — but
keep discussions at a high level, and always prepare
your own solutions

» Read the course policy (on the website)

Explains how you can and cannot get/provide help on
homework and projects

How 332 differs from 326

» 332 Is about of the material from 326
Covers the same general topics, and the important
algorithms/data-structures

Cuts out some of the alternative data-structures, and
some less important ones

You can probably live a full & meaningful life without knowing
what a binomial queue is

» Biggest new topic: a serious treatment of
programming with

For . To use multiple processors to finish
sooner
For . Allow properly synchronized access to

shared resources

Data structures

(Often highly non-obvious) ways to organize information in
order to enable computation over that
iInformation

Key goal over the next week is introducing
to precisely and generally describe efficient use of time and
space

‘Big Oh’ notation used frequently in CS: O(n), O(logn), O(1), etc.
A data structure supports certain operations, each with a:
Purpose: what does the operation do/return
Performance: how efficient is the operation
Examples:
List with operations insert and delete
Stack with operations push and pop

Trade-oftts

A data structure strives to provide many useful, efficient
operations

Often no clear-cut ‘best’: there are usually trade-offs:
Time vs. space
One operation more efficient if another less efficient
Generality vs. simplicity vs. performance

That is why there are many data structures and
educated CSEers internalize their main trade-offs and
techniques

Recognize the right tool for the job
And recognize logarithmic < linear < quadratic < exponential

Terminology

» Abstract Data Type (ADT)

Mathematical description of a “thing” with set of operations
on that “thing”; doesn’t specify the details of how it's done

Ex, Stack: You push stuff and you pop stuff
~1 Could use an array, could use a linked list

» Algorithm

A high level, language-independent description of a step-
by-step process

Ex: Binary search
» Data structure

A specific family of algorithms & data for implementing an
ADT

EXx: Linked list stack

» Implementation of a data structure
A specific implementation in a specific language

Example: Stacks

» The Stack supports operations:
isEmpty: initially true, later have there been same number of
pops as pushes
push: takes an item
pop: raises an error if ISEmpty, else returns most-recently
pushed item not yet returned by a pop
.. (Often some more operations)

» A Stack could use a linked-list or an array
or something else, and associated for the
operations

» One IS In the library java.util.Stack

Why ADT is a usetful abstraction

The Stack ADT Is a useful abstraction because:

» It arises In programming (see text for
more)
Recursive function calls
Balancing symbols (parentheses)
Evaluating postfix notation: 34 + 5 *

» Common ideas; code up a
» We can In high-level terms

“Use a stack and push numbers, popping for operators...”
Rather than, “create a linked list and add a node when...”

» We as humans think in abstractions

The Queue ADT

» Operations
enqueue
dequeue
is empty
create
destroy

» Just like a stack except:
Stack: LIFO (last-in-first-out)
Queue: FIFO (first-in-first-out)

» Just as useful and ubiquitous

Circular Array Queue Data Structure

Q O

size -1

bic|ld|e]|f

frontT backT

// Basic idea only!
enqueue (x) {

Q[back] = x;

back = (back + 1) %
}

// Basic idea only!
dequeue () {

X = Q[front];
(front + 1) %
return x;

size

front = size;

)

What if queue is empty?
Enqueue?
Dequeue?
What if array is full?
How to test for empty?

What is the complexity of
the operations?

Can you find the k
element in the queue?

Linked List Queue Data Structure

b > C

»
>

d

»
>

e

| f

f

front

!
back

// Basic idea only!

enqueue (x) {

back.next = new Node (x) ;
back = back.next;

}

// Basic idea only!

dequeue () {
x = front.item;

front = front.next;

return x;

What if queue is empty?
Enqueue?
Dequeue?

Can list be full?

How to test for empty?

What is the complexity of
the operations?

Can you find the k
element in the queue?

Circular Array vs. Linked List

Array:

May waste unneeded space or
run out of space

Space per element excellent
Operations very simple / fast

Constant-time access to k"
element

For operation insertAtPosition,
must shift all later elements

Not in Queue ADT

List:

Always just enough space
But more space per element
Operations very simple / fast

No constant-time access to kth
element

For operation insertAtPosition
must traverse all earlier elements

— Not in Queue ADT

The Stack ADT

» Operations A EDCBA
create
destroy
push
pop
top (also ‘peek’)
is empty

mmoO W

» Can also be implemented with an array or a linked list
This is Project 1!
Like queues, type of elements is irrelevant

|deal for Java’s generic types (covered in section; important for
project 1)

