
CSE332: Data Abstractions

Lecture 1: Introduction; Stacks/Queues

Tyler Robison

Summer 2010



Welcome to 332!

What we‟re going to be doing this quarter:
 Study many common data structures & algorithms that 

underlie most computer systems, for instance:

 Btrees -> Databases

 Queues -> Printer queue

 Stacks -> Program call-stack

 Hashtables, sorting algorithms, graphs, etc.

 Learn to rigorously analyze them and think carefully 
about what to use when: Uses, limitations, efficiency, 
etc.

 Asymptotic analysis -> shows up everywhere in CS

 Study the increasingly important areas of parallelism 
and concurrency, and relevance to algorithms/data-
structures



Today in class:

 Course mechanics

 What this course is about

 How it differs from 326

 Abstract Data Types

 Start (finish?) stacks and queues (largely review)



About us

Course Staff:

Tyler Robison Sandra Fan

Office hours:

Wednesday 2:00-3:00 & 

by appointment

Room: CSE 212

Office hours:

Thursday 12:00-1:00

Room: CSE 218



To-do

Your to-do:

 Make sure you get mail sent to 

cse332a_su10 at u.washington.edu

 Read all course policies

 Read/skim Chapters 1 and 3 of Weiss book

 Relevant to Project 1, due next week (don‟t worry; it‟s not too bad)

 Relevant to Hw 1, due next week

 Will start Chapter 2 on Wednesday

 Possibly set up your Eclipse / Java environment for the first 
project 

 Thursday‟s section will help

 Check out the website:

http://www.cs.washington.edu/education/courses/cse332/10su/



Staying in touch

 Course email list: cse332a_su10@u
 Students and staff already subscribed (in theory – let me know)

 Used for announcements

 Fairly low traffic

 Course staff: cse332-staff@cs to send to both Sandra & 
myself
 Questions, comments, etc.

 Message Board
 Posing questions, discussing material

 Sandra & I will try to check it on a regular basis

 Anonymous feedback link on webpage
 For good and bad: if you don‟t tell me, I don‟t know



Course materials

 Lectures:
 First exposure to material

 Presentation of algorithms, proofs, etc.

 Provide examples, asides

 Section:
 Programming details (Eclipse, generics, junit, ForkJoin

framework)

 Practice with algorithms: Given the stuff we‟re going to cover, 
practice is definitely important

 Main Textbook: Weiss 2nd Edition in Java

 Optional Textbook: Core Java book: A good Java reference 
(there may be others)

 Parallelism/Concurrency material not in either book (or any 
appropriate one)
 However, Dan Grossman wrote up excellent slides and notes for 

those topics



Course Work

 7 to 8 written/typed homeworks (25%)

 Due at beginning of class each Friday (but not this week)

 No late homework, please
 Even if you don‟t have time to do it all, turn in something – some credit is better 

than no credit

 3 programming projects (some with phases) (25%)

 Use Java and Eclipse (see this week‟s section)

 You‟ve got one 24-hour late-day for the quarter

 First project due next week (rather lighter than the others)

 Projects 2 and 3 will allow partners; use of SVN encouraged

 Midterm: July 19th (20%)

 Final: August 20th (25%)

 5% to your strongest above



Collaboration and Academic Integrity

 Working together is fine – even encouraged – but 

keep discussions at a high level, and always prepare 

your own solutions

 Read the course policy (on the website)

 Explains how you can and cannot get/provide help on 

homework and projects



How 332 differs from 326

 332 is about 70% of the material from 326
 Covers the same general topics, and the important 

algorithms/data-structures

 Cuts out some of the alternative data-structures, and 
some less important ones

 You can probably live a full & meaningful life without knowing 
what a binomial queue is

 Biggest new topic: a serious treatment of 
programming with multiple threads

 For parallelism: To use multiple processors to finish 
sooner

 For concurrency: Allow properly synchronized access to 
shared resources



Data structures

(Often highly non-obvious) ways to organize information in 
order to enable efficient computation over that 
information

 Key goal over the next week is introducing asymptotic analysis
to precisely and generally describe efficient use of time and 
space

 „Big Oh‟ notation used frequently in CS: O(n), O(logn), O(1), etc.

A data structure supports certain operations, each with a:

 Purpose: what does the operation do/return

 Performance: how efficient is the operation

Examples:
 List with operations insert and delete

 Stack with operations push and pop



Trade-offs

A data structure strives to provide many useful, efficient 
operations

Often no clear-cut „best‟: there are usually trade-offs:
 Time vs. space

 One operation more efficient if another less efficient

 Generality vs. simplicity vs. performance

That is why there are many data structures and 
educated CSEers internalize their main trade-offs and 
techniques
 Recognize the right tool for the job

 And recognize logarithmic < linear < quadratic < exponential



Terminology

 Abstract Data Type (ADT)
 Mathematical description of a “thing” with set of operations 

on that “thing”; doesn‟t specify the details of how it‟s done
 Ex, Stack: You push stuff and you pop stuff
 Could use an array, could use a linked list

 Algorithm
 A high level, language-independent description of a step-

by-step process
 Ex: Binary search

 Data structure
 A specific family of algorithms & data for implementing an 

ADT
 Ex: Linked list stack

 Implementation of a data structure
 A specific implementation in a specific language



Example: Stacks

 The Stack ADT supports operations:
 isEmpty: initially true, later have there been same number of 

pops as pushes

 push: takes an item

 pop: raises an error if isEmpty, else returns most-recently 
pushed item not yet returned by a pop

 … (Often some more operations)

 A Stack data structure could use a linked-list or an array 
or something else, and associated algorithms for the 
operations

 One implementation is in the library java.util.Stack



Why ADT is a useful abstraction

The Stack ADT is a useful abstraction because:

 It arises all the time in programming (see text for 

more)

 Recursive function calls

 Balancing symbols (parentheses)

 Evaluating postfix notation: 3 4 + 5 * 

 Common ideas; code up a reusable library

 We can communicate in high-level terms

 “Use a stack and push numbers, popping for operators…”

 Rather than, “create a linked list and add a node when…”

 We as humans think in abstractions



The Queue ADT

 Operations

enqueue

dequeue

is_empty

create

destroy

 Just like a stack except:

 Stack: LIFO (last-in-first-out)

 Queue: FIFO (first-in-first-out)

 Just as useful and ubiquitous

F E D C B
enqueue dequeue

G A



Circular Array Queue Data Structure

 What if queue is empty?

 Enqueue?

 Dequeue?

 What if array is full?

 How to test for empty?

 What is the complexity of 
the operations?

 Can you find the kth

element in the queue?

// Basic idea only!

enqueue(x) {

Q[back] = x;

back = (back + 1) % size

}

// Basic idea only!

dequeue() {

x = Q[front];

front = (front + 1) % size;

return x;

}

b c d e f

Q: 0 size - 1

front back



Linked List Queue Data Structure

 What if queue is empty?

 Enqueue?

 Dequeue?

 Can list be full?

 How to test for empty?

 What is the complexity of 
the operations?

 Can you find the kth

element in the queue?

b c d e f

front back

// Basic idea only!

enqueue(x) {

back.next = new Node(x);

back = back.next;

}

// Basic idea only!

dequeue() {

x = front.item;

front = front.next;

return x;

}



Circular Array vs. Linked List

Array:

– May waste unneeded space or 
run out of space

– Space per element excellent

– Operations very simple / fast

– Constant-time access to kth

element

– For operation insertAtPosition, 
must shift all later elements
– Not in Queue ADT

List:

– Always just enough space

– But more space per element

– Operations very simple / fast

– No constant-time access to kth

element

– For operation insertAtPosition

must traverse all earlier elements

– Not in Queue ADT



The Stack ADT

 Operations

create

destroy

push

pop

top (also ‘peek’)

is_empty

 Can also be implemented with an array or a linked list
 This is Project 1!

 Like queues, type of elements is irrelevant
 Ideal for Java‟s generic types (covered in section; important for 

project 1)

A

B

C

D

E

F

E D C B A

F


