
CSE332 Data Abstractions, Summer 2010

Homework 4

Due Friday, July 23, 2010 at the beginning of class.

Problem 1: Algorithm Analysis

The methods below implement recursive algorithms that return the first index in an array to hold 17, or -1
if no such index exists.

int first17_a(int[] array, int i) {

if(i >= array.length) return -1;
if(array[i]==17) return 0;
if(first17_a(array,i+1) == -1) return -1;
return 1 + first17_a(array,i+1);

}

int first17_b(int[] array, int i) {
if(i >= array.length) return -1;
if(array[i]==17) return 0;
int x = first17_b(array,i+1);
if(x == -1) return -1;
return x + 1;

}
(a) What kind of input produces the worst-case running time for first17_a(arr,0)?

(b) For first17_a, give a recurrence relation, including a base case, describing the worst-case running time,
where n is the length of the array. You may use whatever constants you wish for constant-time work.

(c) Give a tight asymptotic (“big-Oh”) upper bound for the running time of first17_a(arr,0) given your
answer to the previous question.

(d) What kind of input produces the worst case running time for first17_b(arr,0)?

(e) For first17_b, give a recurrence relation, including a base case, describing the worst-case running time,
where n is the length of the array. You may use whatever constants you wish for constant-time work.

(f) Give a tight asymptotic (“big-Oh”) upper bound for for the running time of first17_b(arr,0) given
your answer to the previous question.

(g) Give a tight asymptotic (“big-Omega”) worst-case lower bound for the problem of finding the first 17
in an array (not a specific algorithm). Briefly justify your answer.

Problem 2: QuickSort Variation

Consider this pseudocode for quicksort, which leaves pivot selection and partitioning to helper functions not
shown:
// sort positions lo through hi-1 in array using quicksort (no cut-off)
quicksort(int[] array, int lo, int hi) {

if(lo>=hi-1) return;
pivot = pickPivot(array,lo,hi);
pivotIndex = partition(array,lo,hi,pivot);
quicksort(array,lo,pivotIndex);
quicksort(array,pivotIndex+1,hi);

}

Modify this algorithm to take an additional integer argument enough:

// sort at least enough positions of lo through hi-1 in array using quicksort (no cut-off)

quicksort(int[] array, int lo, int hi, int enough) { ... }

We change the definition of correctness to require only that at least the first ‘enough’ entries (from left-to
right) are sorted and contain the smallest enough values. (If enough >= hi-lo, then the whole range must be
sorted as usual.) While one correct solution is to ignore the enough parameter, come up with a better solution
that skips completely unnecessary recursive calls. Assume the initial call to quicksort specifies that ‘lo’ is 0
and ‘hi’ is the upper-bound of the array. Watch your off-by-one errors!

Problem 3: Sorting Phone Numbers

The input to this problem consists of a sequence of 7-digit phone numbers written as simple integers (e.g.
5551212 represents the phone number 555-1212). The sequence is provided via an Iterator<Integer>. No
number appears in the input more than once but there is no other limit on the size of the input. Write precise
(preferable Java-like) pseudocode for a method that prints out the phone numbers (as integers) in the list in
ascending order. Your solution must not use more than 2MB of memory. (Note: It cannot use any other
storage – hard drive, network, etc.) Explain why your solution is under the 2MB limit.

