1.

a. Give the run-times for these sorting algorithms:

	
	Expected
	Best-case
	Worst-case

	Insertion Sort

	O(n2)
	O(n)
	O(n2)

	Selection Sort

	O(n2)
	O(n2)
	O(n2)

	Heap Sort

	O(nlogn)
	O(nlogn)
	O(nlogn)

	Quick Sort

	O(nlogn)
	O(nlogn)
	O(n2)

	Merge Sort

	O(nlogn)
	O(nlogn)
	O(nlogn)

	Radix Sort

	O(kn)
	O(kn)
	O(kn)

b.
	
	Average

	Prim’s MST

	O(|E|log|V|)

	Kruskal’s MST

	O(|E|log|V|)

	Dijkstra’s

	O(|V|log|V| +|E|log|V|)
Or |V|2

	Topological sort

	O(|E| + |V|)

2.

a.

[image: image1.png]

b. We can show the process in Prim’s via a table. Start with an empty table.

	Vertex
	Known
	Distance
	Path

	A
	F
	
	

	B
	F
	
	

	C
	F
	
	

	D
	F
	
	

	E
	F
	
	

	F
	F
	
	

	G
	F
	
	

	H
	F
	
	

	I
	F
	
	

Say we start at vertex A; explore ‘A’: mark as ‘Known’, update distance of any adjacent edges that are 1) not known, and 2) have edge weight < current distance value in table – mark the ‘Path’ of those updated nodes to be the node we are exploring.

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	F
	4
	A

	C
	F
	
	

	D
	F
	10
	a

	E
	F
	1
	A

	F
	F
	
	

	G
	F
	
	

	H
	F
	
	

	I
	F
	
	

Explore ‘E’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	F
	4
	A

	C
	F
	12
	E

	D
	F
	7
	E

	E
	T
	1
	A

	F
	F
	8
	E

	G
	F
	5
	E

	H
	F
	7
	E

	I
	F
	2
	E

Explore ‘I’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	F
	4
	A

	C
	F
	12
	E

	D
	F
	7
	E

	E
	T
	1
	A

	F
	F
	3
	I

	G
	F
	5
	E

	H
	F
	6
	I

	I
	T
	2
	E

Explore ‘F’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	F
	4
	A

	C
	F
	4
	F

	D
	F
	7
	E

	E
	T
	1
	A

	F
	T
	3
	I

	G
	F
	5
	E

	H
	F
	6
	I

	I
	T
	2
	E

Explore ‘B’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	F
	3
	B

	D
	F
	7
	E

	E
	T
	1
	A

	F
	T
	3
	I

	G
	F
	5
	E

	H
	F
	6
	I

	I
	T
	2
	E

Explore ‘C’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	T
	3
	B

	D
	F
	7
	E

	E
	T
	1
	A

	F
	T
	3
	I

	G
	F
	5
	E

	H
	F
	6
	I

	I
	T
	2
	E

Explore ‘G’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	T
	3
	B

	D
	F
	6
	G

	E
	T
	1
	A

	F
	T
	3
	I

	G
	T
	5
	E

	H
	F
	6
	I

	I
	T
	2
	E

Explore ‘D’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	T
	3
	B

	D
	T
	6
	G

	E
	T
	1
	A

	F
	T
	3
	I

	G
	T
	5
	E

	H
	F
	6
	I

	I
	T
	2
	E

Explore ‘H’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	T
	3
	B

	D
	T
	6
	G

	E
	T
	1
	A

	F
	T
	3
	I

	G
	T
	5
	E

	H
	T
	6
	I

	I
	T
	2
	E

The MST is then: AB:4, AE:1,BC:3, DG:6, EG:5, EI:2, FI:3, HI:6

Total cost: 30

c.

Kruskal’s: Order the list of edges of the graph; step through and accept an edge if it’s two vertices are not connected (we’d keep track of it using the union/find data structure).

	Edge
	Cost
	Accepted

	AE
	1
	Yes

	EI
	2
	Yes

	BC
	3
	Yes

	FI
	3
	Yes

	AB
	4
	Yes

	CF
	4
	No

	GE
	5
	Yes

	HI
	6
	Yes

	DG
	6
	Yes

	DE
	7
	

	EH
	7
	

	EF
	8
	

	GH
	9
	

	AD
	10
	

	BE
	11
	

	CE
	12
	

The MST is then: AB:4, AE:1, BC:3, DG:6, EI:2, FI:3, GE:5, HI:6

Cost: 30

This turns out to be the same MST as we got with Prim’s, but we can get a different one by swapping AB with CF; had our ordering of the edges for the above table been different, we may have ended up with this one instead.

d. We can use a table similar that used for Prim’s to find the shortest distance from A to every other vertex.

	Vertex
	Known
	Distance
	Path

	A
	F
	
	

	B
	F
	
	

	C
	F
	
	

	D
	F
	
	

	E
	F
	
	

	F
	F
	
	

	G
	F
	
	

	H
	F
	
	

	I
	F
	
	

Explore ‘A’; very similar to Prim’s, but here the ‘Distance’ is not merely the edge weight, but is the edge weight plus the current path length.

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	F
	4
	A

	C
	F
	
	

	D
	F
	10
	A

	E
	F
	1
	A

	F
	F
	
	

	G
	F
	
	

	H
	F
	
	

	I
	F
	
	

Explore ‘E’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	F
	4
	A

	C
	F
	13
	E

	D
	F
	8
	E

	E
	T
	1
	A

	F
	F
	9
	E

	G
	F
	6
	E

	H
	F
	8
	E

	I
	F
	3
	E

Explore ‘I’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	F
	4
	A

	C
	F
	13
	E

	D
	F
	8
	E

	E
	T
	1
	A

	F
	F
	6
	I

	G
	F
	6
	E

	H
	F
	8
	E

	I
	T
	3
	E

Explore ‘B’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	F
	7
	B

	D
	F
	8
	E

	E
	T
	1
	A

	F
	F
	6
	I

	G
	F
	6
	E

	H
	F
	8
	E

	I
	T
	3
	E

Explore ‘F’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	F
	7
	B

	D
	F
	8
	E

	E
	T
	1
	A

	F
	T
	6
	I

	G
	F
	6
	E

	H
	F
	8
	E

	I
	T
	3
	E

Explore ‘G’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	F
	7
	B

	D
	F
	8
	E

	E
	T
	1
	A

	F
	T
	6
	I

	G
	T
	6
	E

	H
	F
	8
	E

	I
	T
	3
	E

Explore ‘C’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	T
	7
	B

	D
	F
	8
	E

	E
	T
	1
	A

	F
	T
	6
	I

	G
	T
	6
	E

	H
	F
	8
	E

	I
	T
	3
	E

Explore ‘D’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	T
	7
	B

	D
	T
	8
	E

	E
	T
	1
	A

	F
	T
	6
	I

	G
	T
	6
	E

	H
	F
	8
	E

	I
	T
	3
	E

Explore ‘H’

	Vertex
	Known
	Distance
	Path

	A
	T
	0
	-

	B
	T
	4
	A

	C
	T
	7
	B

	D
	T
	8
	E

	E
	T
	1
	A

	F
	T
	6
	I

	G
	T
	6
	E

	H
	T
	8
	E

	I
	T
	3
	E

Now we’re done.

We can find the shortest path A to an arbitrary vertex X by starting at X and tracing it’s path backward using the ‘Path’ column of the table.

For instance, to find the path from A to F, start at F, look up its path value I; now check I’s, which is E; now check E’s, which is A. So the path is AEIF.

3.

a. T1=20 hours of work, half of which is sequential, and half of which can be done in parallel.

If we have 4 processors, we still have to do the first half sequentially – it will still take 10 hours – but the second half of the time will be divided by 4:

T4=10+10/4=12.5

b. Even with an infinite # of processors, our equation becomes:
Tinfinity=10+10/∞ = 10

4.
a.

public Double compute()

{

if(hi-lo==1) return arr[lo];

Multiply left=new Multiply(arr,lo,(hi+lo)/2);

Multiply right=new Multiply(arr,(hi+lo)/2,hi);

left.fork();

double rightAns=right.compute();

double leftAns=left.join();

return rightAns*leftAns;

}
b. For the (hi-lo==1) case, check if the value is 0; if so, return 1.0 instead.
5.

a. Starting from an empty account, call deposit(50) then withdrawl(1); before the deposit updates ‘balance’, withdrawl runs in its entirety.

b. Starting with an empty account, 2 deposits are made, one for $5 and one for $20. Both processes evaluate ‘balance+amt’ before either stores it back in balance, so one of the deposits will be ‘forgotten.’
c.

int balance;

synchronize void withdraw(long amt) throws Exception

{

if(amt>balance) throw new Exception("Insufficient Funds");

balance=balance-amt;

}

synchronize
void deposit(long amt) { balance=balance+amt; }
d.

int balance;

ReentrantLock lk; //initialize in constructor
void withdraw(long amt) throws Exception

{

lk.lock();

try

{

if(amt>balance) throw new Exception("Insufficient Funds");

balance=balance-amt;

}

finally{lk.unlock();}

}

void deposit(long amt) { lk.lock(); balance=balance+amt; lk.unlock(); }
