CSE332: Data Abstractions

Lecture 5: Binary Heaps, Continued

Dan Grossman
Spring 2010

Review

insert
—

e Priority Queue ADT: insert comparable object, deleteMin

¢ Binary heap data structure: Complete binary tree where each
node has priority value greater than its parent

¢ O(height-of-tree)=0O(log n) insert and deleteMin operations
— insert: put at new last position in tree and percolate-up

— deleteMin: remove root, put last element at root and
percolate-down

« But: tracking the “last position” is painful and we can do better

Spring 2010 CSE332: Data Abstractions 2

Array Representation of Binary Trees

From node i:

left child: 1*2
right child: 1*2+1
parent: 1/2

(wasting index 0 is
convenient)

implicit (array) implementation:

0

|alBlclplefrlcfH]t]o]Kr]L]
1 2 3 4 5 6 7 8 9 10 11 12
4/14/2010 3

13

Judging the array implementation

Plusses:
* Non-data space: just index 0 and unused space on right

— In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)

— Array would waste more space if tree were not complete

« Forreasons you learn in CSE351 / CSE378, multiplying and
dividing by 2 is very fast
e Last used position is just index size

Minuses:

« Same might-by-empty or might-get-full problems we saw with
stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”

Spring 2010 CSE332: Data Abstractions 4

Pseudocode: insert

void insert(int val) {
if(size==arr.length-1)
resize();
size++;
i=percolateUp(size,val);
arr[i] = val;

}

Note this pseudocode inserts ints,
not useful data with priorities

int percolateUp(int hole,
int val) {
while(hole > 1 &&
val < arr[hole/2])

arr[hole] = arr[hole/2];

hole = hole 7/ 2;

return hole;

1020604060 |85| 00 |700/50| | | |

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Pseudocode: deleteMin

int percolateDown(int hole,

int deleteMin(Q) {

iT(isEmpty()) throw..

ans = arr[1];

hole = percolateDown
(1,arr[size]);

arr[hole] = arr[size];

size—-;

return ans;

Note this pseudocode deletes ints,
not useful data with priorities

int val) {

while(2*hole <= size) {

left = 2*hole;
right = left + 1;
if(arr[left] < arr[right]
|l right > size)
target = left;
else
target = right;
if(arr tar%et] < val) {

arr[hole] = arr[target];
hole = target;
} else
break;

¥
return hole;

1020|6040 |60|85| 99 |700/50| | | | |

0 1 2 3 4 5 7 8 9 10 11 12 13
Spring 2010 CSE332: Data Abstractions 5 Spring 2010 CSE332: Data Abstractions 6
Example Other operations

1. insert: 16, 32, 4, 69, 105, 43, 2

2. deleteMin

Spring 2010

CSE332: Data Abstractions 7

= decreaseKey: given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
— Change priority and percolate up

= increaseKey: given pointer to object in priority queue (e.g., its
array index), raise its priority value by p
— Change priority and percolate down

= remove: given pointer to object, take it out of the queue

— decreaseKey with p = o0, then deleteMin

Running time for all these operations?

Spring 2010

CSE332: Data Abstractions 8

Build Heap

* Suppose you started with n items to put in a new priority queue
— Call this the bui IdHeap operation

= create, followed by n inserts works
— Only choice if ADT doesn’t provide bui ldHeap explicitly
— O(n log n)

* Why would an ADT provide this unnecessary operation?
— Convenience
— Efficiency: an O(n) algorithm called Floyd’'s Method

Floyd's Method

1. Use nitems to make any complete tree you want
— Thatis, put them in array indices 1,...,n

2. Treat it as a heap by fixing the heap-order property

— Bottom-up: leaves are already in heap order, work up
toward the root one level at a time

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;

— Common issue in ADT design: how many specialized }
operations }
Spring 2010 CSE332: Data Abstractions 9 Spring 2010 CSE332: Data Abstractions 10
Example Example

In tree form for readability

— Red for node not less than
descendants

* heap-order problem 6 @
— Notice no leaves are red
— Check/fix each non-leaf @ @ 9 @
@EOOOE

bottom-up (6 steps here)

Spring 2010 CSE332: Data Abstractions 11

@ Eﬂ* @

®) ® ©)
b
@O

« Happens to already be less than children (er, child)

@EeOOE

Spring 2010 CSE332: Data Abstractions

(LD

© @ W @ O

12

Example

® Eﬁ} ®
(5) ® (5) ®
OOOO® OEOOOE

¢ Percolate down (notice that moves 1 up)

Example

® Eﬂ} ®
(5) ® (5) ®
gg@@@ OEOVOE

¢ Another nothing-to-do step

Spring 2010 CSE332: Data Abstractions 13 Spring 2010 CSE332: Data Abstractions 14
Example Example
@ @ @ @
(8) ® (8) (2) (5) (2) D (2)
3 @O @ @ & 0 © @ 3 O & @ & 66 © @
@EOOOE oJelvlol® O@eOWOL @OOWOL
¢ Percolate down as necessary (steps 4a and 4b)

Spring 2010 CSE332: Data Abstractions 15 Spring 2010 CSE332: Data Abstractions 16

Example

@) (2 © (2
B & 6 © O® 6 6 O
OJOIVIOI® @ EOOO

Spring 2010 CSE332: Data Abstractions 17

But is it right?

* “Seems to work”
— Let’s prove it restores the heap property (correctness)
— Then let’s prove its running time (efficiency)

void buildHeap() {
for(i = size/2; i>0; i--) {
val = arr[i]l;
hole = percolateDown(i,val);
arr[hole] = val;
}
}

Spring 2010 CSE332: Data Abstractions 18

Correctness

void buildHeap() {
for(i = size/2; 1>0; 1--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}

Loop Invariant: For all j>1i, arr[J] is less than its children
e Trueinitially: If j > size/2,then jis aleaf
— Otherwise its left child would be at position > size

¢ True after one more iteration: loop body and percolateDown
make arr[i] less than children without breaking the property
for any descendants

So after the loop finishes, all nodes are less than their children

Spring 2010 CSE332: Data Abstractions 19

Efficiency

void buildHeap() {
for(i = size/2; 1>0; 1--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}

Easy argument: buildHeap is O(n log n) where nis size
= size/2 loop iterations
¢ Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm...

Spring 2010 CSE332: Data Abstractions 20

Efficiency
void buildHeap(Q) {
for(i = size/2; 1>0; i--) {
val = arr[i];
hole = percolateDown(i,val);
arr[hole] = val;
}
}
Better argument: bui ldHeap is O(n) where nis size
= size/2 total loop iterations: O(n)
e 1/2 the loop iterations percolate at most 1 step
e 1/4 the loop iterations percolate at most 2 steps
« 1/8 the loop iterations percolate at most 3 steps
e ((1/2) + (2/14) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)
— So at most 2(size/2) total percolate steps: O(n)

Spring 2010 CSE332: Data Abstractions 21

Lessons from bui IdHeap

« Without bui ldHeap, our ADT already let clients implement their
own in 6(n log n) worst case

— Worst case is inserting lower priority values later

» By providing a specialized operation internally (with access to the
data structure), we can do O(n) worst case

— Intuition: Most data is near a leaf, so better to percolate down

¢ Can analyze this algorithm for:
— Correctness: Non-trivial inductive proof using loop invariant
— Efficiency:
« First analysis easily proved it was O(n 1og n)
« A “tighter” analysis shows same algorithm is O(n)

Spring 2010 CSE332: Data Abstractions 22

What we’re skipping (see text if curious)

« d-heaps: have d children instead of 2
— Makes heaps shallower, useful for heaps too big for memory

— The same issue arises for balanced binary search trees and
we will study “B-Trees”

« Different data structures for priority queues that support a
logarithmic time merge operation (impossible with binary heaps)

— merge: given two priority queues, make one priority queue
— How might you merge binary heaps:

« If one heap is much smaller than the other?

« If both are about the same size?

Spring 2010 CSE332: Data Abstractions 23

