

CSE332: Data Abstractions

Lecture 3: Asymptotic Analysis

Dan Grossman Spring 2010

Comparing algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs because probably any algorithm is "plenty good" for small inputs (if *n* is 10, probably anything is fast)

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

- Can do analysis before coding!

Spring 2010

CSE332: Data Abstractions

Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.

(This is an approximation of reality: a very useful "lie".)

Consecutive statements	Sum of times
Conditionals	Time of test plus slower branch
Loops	Sum of iterations
Calls	Time of call's body
Recursion	Solve recurrence equation

Example

Find an integer in a sorted array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
    ???
}
```

2

Binary search

Find an integer in a sorted array

- Can also be done non-recursively but "doesn't matter" here

```
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
   return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
   int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
   if(lo==hi) return false;
   if(arr[mid]==k) return true;
   if(arr[mid]< k) return help(arr,k,mid+1,hi);
   else return help(arr,k,lo,mid);
}
Spring 2010 CSE33: Data Abstractions 6</pre>
```

Binary search

Best case: 8ish steps = O(1)Worst case: T(n) = 10ish + T(n/2) where n is hi-lo

- O(log n) where n is array.length
- Solve recurrence equation to know that...

Solving Recurrence Relations

- 1. Determine the recurrence relation. What is the base case?
 - $T(n) = 10 + T(n/2) \qquad T(1) = 8$
- 2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions*.
 - T(n) = 10 + 10 + T(n/4)= 10 + 10 + 10 + T(n/8) = ... = 10k + T(n/(2^k))
- 3. Find a closed-form expression by setting the number of
- expansions to a value which reduces the problem to a base case
- $n/(2^k) = 1$ means $n = 2^k$ means $k = \log_2 n$
- So $T(n) = 10 \log_2 n + 8$ (get to base case and do it)
- So *T*(*n*) is *O*(log *n*)

Spring 2010

Ignoring constant factors

- So binary search is $O(\log n)$ and linear is O(n)
 - But which is faster
- Could depend on constant factors
 - How many assignments, additions, etc. for each n
 - And could depend on size of n
- But there exists some n_0 such that for all $n > n_0$ binary search wins

CSE332: Data Abstractions

• Let's play with a couple plots to get some intuition...

Example

- Let's try to "help" linear search
 - Run it on a computer 100x as fast (say 2010 model vs. 1990)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!

Another example: sum array

Two "obviously" linear algorithms: T(n) = O(1) + T(n-1)

Iterative:

Spring 2010

int help(int[]arr,int i) { if(i==arr.length) return 0;

return arr[i] + help(arr,i+1);

Spring 2010

Recursive: - Recurrence is k + k + ... + kfor *n* times

CSE332: Data Abstractions

```
11
```

9

What about a binary version?

```
int sum(int[] arr){
   return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
   if(lo==hi) return 0;
   if(lo==hi-1) return arr[lo];
   int mid = (hi+lo)/2;
   return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is T(n) = O(1) + 2T(n/2)

- -1+2+4+8+... for log *n* times
- $2^{(\log n)} 1$ which is proportional to *n* (definition of logarithm)

Easier explanation: it adds each number once while doing little else

"Obvious": You can't do better than O(n) – have to read whole array

Parallelism teaser

- But suppose we could do two recursive calls at the same time
 - Like having a friend do half the work for you!

- If you have as many "friends of friends" as needed the recurrence is now T(n) = O(1) + 1T(n/2)
 - O(log n) : same recurrence as for find

Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

T(n) = O(1) + T(n-1)	linear
T(n) = O(1) + 2T(n/2)	linear
T(n) = O(1) + T(n/2)	logarithmic
T(n) = O(1) + 2T(n-1)	exponential
T(n) = O(n) + T(n-1)	quadratic (see previous lecture)
T(n) = O(n) + T(n/2)	linear
T(n) = O(n) + 2T(n/2)	O(n log n)

Note big-Oh can also use more than one variable

• Example: can sum all elements of an *n*-by-*m* matrix in O(nm)

```
    Spring 2010
    CSE332: Data Abstractions
    13
    Spring 2010
    CSE332: Data Abstractions
```

Asymptotic notation

About to show formal definition, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

- 4*n* + 5
- $0.5n \log n + 2n + 7$
- $n^3 + 2^n + 3n$
- $n \log(10n^2)$

Big-Oh relates functions

We use O on a function f(n) (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So (3n²+17) is in O(n²)

- $3n^2$ +17 and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

$$-(3n^2+17)$$
 is $O(n^2)$
 $-(3n^2+17) = O(n^2)$

 $-(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

14

Formally Big-Oh (Dr? Ms? Mr? ©)

Definition:

 $\begin{array}{c} T_{i} \mathbf{x}_{c} \\ f(\mathbf{x}) \\ f($

- g(n) is in O(f(n)) if there exist constants *c* and such that $g(n) \le c f(n)$ for all $n \ge n_0$
- To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n₀ large enough to "cover the lower-order terms"
 - Example: Let $g(n) = 3n^2+17$ and $f(n) = n^2$ *c*=5 and $n_0=10$ is more than good enough
- This is "less than or equal to"
 - So $3n^2$ +17 is also $O(n^5)$ and $O(2^n)$ etc.

More Asymptotic Notation

- Upper bound: *O*(f(*n*)) is the set of all functions asymptotically less than or equal to f(*n*)
 - g(*n*) is in O(f(*n*)) if there exist constants *c* and n_0 such that g(*n*) ≤ *c* f(*n*) for all *n* ≥ n_0
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(*n*) is in Ω(f(*n*)) if there exist constants *c* and *n*₀ such that $g(n) \ge c f(n)$ for all *n* ≥ *n*₀
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (use *different c* values)

Spring 2010	CSE332: Data Abstractions	17	Spring 2010	CSE332: Data Abstractions	18

Correct terms, in theory

- A common error is to say O(f(n)) when you mean $\theta(f(n))$
 - Since a linear algorithm is also O(n⁵), it's tempting to say "this algorithm is exactly O(n)"
 - That doesn't mean anything, say it is $\theta(n)$
 - That means that it is not, for example O(log n)

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
 - Example: sum is $o(n^2)$ but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
 - Example: sum is ω(log n) but not ω(n)

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: binary-search algorithm
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common: Algorithm is Ω(log log n) in the worst-case (it is not really, really, really fast asymptotically)
 - Less common (but very good to know): the find-in-sortedarray *problem* is Ω(log n) in the worst-case
 - No algorithm can do better (without parallelism)
 - A *problem* cannot be O(f(n)) since you can always find a slower algorithm, but can mean *there exists* an algorithm

Other things to analyze

 Space instead of time Remember we can often use space to gain time Average case Sometimes only if you assume something about the distribution of inputs See CSE312 and STAT391 Sometimes uses randomization in the algorithm Will see an example with sorting; also see CSE312 Sometimes an <i>amortized guarantee</i> Will discuss in a later lecture 			 Analysis can be about: The problem or the algorithm (usually algorithm) Time or space (usually time) Or power or dollars or Best-, worst-, or average-case (usually worst) Upper-, lower-, or tight-bound (usually upper or tight) 			
Spring 2010	CSE332: Data Abstractions	21	Spring 2010	CSE332: Data Abstractions	22	
 Asymptotic considered independent of the second s	Symptotic is valuable omplexity focuses on behavior for large <i>r</i> of any computer / coding trick abuse" it to be misled about trade-offs ⁰ vs. log <i>n</i> ically <i>n</i> ^{1/10} grows more quickly ross-over" point is around 5 * 10 ¹⁷ have input size less than 2 ⁵⁸ , prefer <i>n</i> ^{1/10}	n and is				

Summary