
CSE332: Data Abstractions

Lecture 27: A Few Words on NP

Dan Grossman
Spring 2010

This does not belong in CSE332

• This lecture mentions some highlights of NP, the P vs. NP
question, and NP-completeness

• It should not be part of CSE332:
– 30 minutes can’t due this rich and important topic justice
– It’s a major component (approx. 2 weeks) of CSE312
– It’s not on the final

• But in Spring 2010, you are all “in the transition”
– None of you will take CSE312 because you took CSE321
– So want to mention what you’re missing
– Encourage you to take CSE421 or CSE431 to learn more

• So, next academic year, this lecture drops out of CSE332
Spring 2010 2CSE332: Data Abstractions

NP
• P: The class of problems for which polynomial time (O(nk) for some

constant k) algorithms exist (to solve the problem)
– Every problem we have studied is in P

• Examples: Sorting, minimum spanning tree, …
– Many problems don’t have efficient algorithms!

• Misleading to have your instructor pick the problem! ☺

• NP: The class of problems for which polynomial time algorithms
exist to check that an answer is “yes”

• There are many important problems for which:
– We know they are in NP
– We do not know if they are in P (but we highly doubt it)
– The best algorithms we have are exponential

• O(kn) for some constant k
Spring 2010 3CSE332: Data Abstractions

Outline

• A few example problems
– Checking a solution vs. finding a solution

• P == NP ?

• NP-completeness

• Why it’s called NP

• NP is not as hard as it gets

Spring 2010 4CSE332: Data Abstractions

Subset sum

Input: An array of n numbers and a target-sum sum
Output: A subset of the numbers that add up to sum if one exists

O(2n) algorithm: Try every subset of array
O(nk) algorithm: Unknown, probably does not exist

Verifying a solution: Given a subset that allegedly adds up to sum,
add them up in O(n)

Verifying no solution exists: hard in general as far as we know

Spring 2010 5CSE332: Data Abstractions

14 17 5 2 3 2 6 7 6 17 31?

Vertex Cover: Optimal

Input: A graph (V,E)
Output: A minimum size subset S of V such that

for every edge (u,v) in E, at least one of u or v is in S

O(2|V|) algorithm: Try every subset of vertices; pick smallest one
O(|V|k) algorithm: Unknown, probably does not exist

Verifying a solution:
– Hmm, hard to verify an answer is optimal (smalles |S|)
– Can recast vertex cover as a decision problem

Spring 2010 6CSE332: Data Abstractions

Vertex Cover:
Decision Problem

Spring 2010 7CSE332: Data Abstractions

Input: A graph (V,E) and a number m
Output: A subset S of V such that for every edge (u,v) in E, at least

one of u or v is in S and |S|=m (if such an S exists)

O(2m) algorithm: Try every subset of vertices of size m
O(mk) algorithm: Unknown, probably does not exist

Verifying a solution: Easy, see if S has size m and covers edges

Good enough: Binary search on m can solve the original problem

Traveling Salesman

[Like vertex cover, usually interested in the optimal solution, but we
can ask a yes/no question and rely on binary search for optimal]

Input: A complete directed graph (V,E) and a number m
Output: A path that visits each vertex exactly once and has total

cost < m if one exists

O(2|V|) algorithm: Try every subset of vertices; pick smallest one
O(|V|k) algorithm: Unknown, probably does not exist

Verifying a solution: Easy

Spring 2010 8CSE332: Data Abstractions

Satisfiability

Input: a logic formula of size m containing n variables
Output: An assignment of Boolean values to the variables in the

formula such that the formula is true

O(m*2n) algorithm: Try every variable assignment
O(mknk) algorithm: Unknown, probably does not exist

Verifying a solution: Evaluate the formula under the assignment

Spring 2010 9CSE332: Data Abstractions

Outline

• A few example problems
– Checking a solution vs. finding a solution

• P == NP ?

• NP-completeness

• Why it’s called NP

• NP is not as hard as it gets

Spring 2010 10CSE332: Data Abstractions

More?

• Thousands of different problems that:
– Have real applications
– Nobody has polynomial algorithms for

• Widely believed: None of these problems have polynomial
algorithms
– For optimal solutions, but some can be approximated

• But: Nobody has ever proven that a single problem is:
– In NP: A solution can be verified in polynomial time
– And not in P: Cannot be solved in polynomial time

Spring 2010 11CSE332: Data Abstractions

P==NP ?

• Proving (or disproving) P != NP is the most vexing and important
open question in computer science and probably mathematics
– A $1M prize, the Turing Award, and eternal fame await

• Clearly P ⊆ NP
– If there is a polynomial algorithm, then we can just “verify” a

solution exists by running the algorithm

• If P==NP, then all sorts of strange things / problems arise
– Most cryptography would stop working, for example
– But nobody has been able to prove P != NP

Spring 2010 12CSE332: Data Abstractions

NP-Completeness

What we have been able to prove is that many problems in NP are
actually NP-complete:

Definition: A problem is NP-complete if the discovery of a
polynomial algorithm for it means every problem in NP has a
polynomial-time algorithm, i.e., P==NP

All four of our examples are NP-complete
– There are thousands more

How do you prove a problem is NP-complete?
– Take CSE421

Spring 2010 13CSE332: Data Abstractions

Why it’s called NP

• Your instructor finds the “polynomial time to verify a solution”
definition of NP intuitive

• An equivalent definition (not obvious it’s equivalent) is “there
exists a polynomial time algorithm if the algorithm is allowed to
make correct guesses at every step”
– This “guessing” is technically non-determinism in the sense

you will learn (or have learned) about in CSE322
– NP stands for non-deterministic polynomial time

Spring 2010 14CSE332: Data Abstractions

Hard problems

There are problems in each of these categories:

• We know how to solve efficiently: most of this course

• We do not know how to solve efficiently:
– For example, NP-complete problems

• We know we cannot solve efficiently: see CSE431

• We know we cannot solve at all: see CSE311/CSE322
– Canonical example: The halting problem

A key art in computer science:
When handed a problem, figure out which category it is in!

Example: Don’t waste time on an algorithm for an intractable problem!

Spring 2010 15CSE332: Data Abstractions

