

CSE332: Data Abstractions

Lecture 26: Minimum Spanning Trees

Dan Grossman Spring 2010

"Scheduling note"

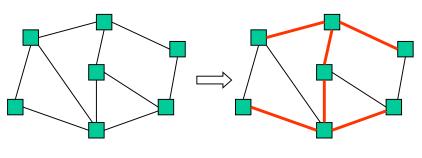
- "We now return to our interrupted program" on graphs
 - Last "graph lecture" was lecture 17
 - Shortest-path problem
 - Dijkstra's algorithm for graphs with non-negative weights
- Why this strange schedule?
 - Needed to do parallelism and concurrency in time for project 3 and homeworks 6 and 7
 - But cannot delay all of graphs because of the CSE312 corequisite
- So: not the most logical order, but hopefully not a big deal

Spring 2010

CSE332: Data Abstractions

Spanning trees

- A simple problem: Given a *connected* graph G=(V,E), find a minimal subset of the edges such that the graph is still connected
 - A graph G2=(V,E2) such that G2 is connected and removing any edge from E2 makes G2 disconnected



Observations

- 1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected
- 2. Solution not unique unless original graph was already a tree
- 3. Problem ill-defined if original graph not connected
- 4. A tree with |V| nodes has |V|-1 edges
 - So every solution to the spanning tree problem has |V|-1 edges

Motivation

- A spanning tree connects all the nodes with as few edges as possible
- Example: A "phone tree" so everybody gets the message and no unnecessary calls get made
 - Bad example since would prefer a balanced tree
- In most compelling uses, we have a *weighted* undirected graph and we want a tree of least total cost
- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem

- Will do that next, after intuition from the simpler case

Two approaches

Different algorithmic approaches to the spanning-tree problem:

- 1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
- 2. Iterate through edges; add to output any edge that doesn't create a cycle

Spring 2010	CSE332: Data Abstractions	5	Spring 2010	CSE332: Data Abstractions	6

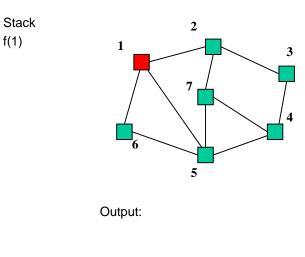
Spanning tree via DFS

```
spanning_tree(Graph G) {
  for each node i: i.marked = false
  for some node i: f(i)
}
f(Node i) {
    i.marked = true
    for each j adjacent to i:
        if(!j.marked) {
            add(i,j) to output
            f(j) // DFS
        }
}
```

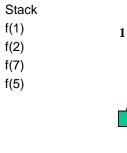
Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

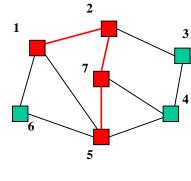
Time: O(**|E|**)

7



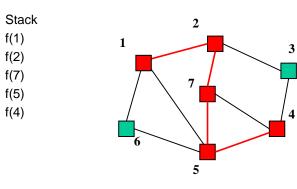




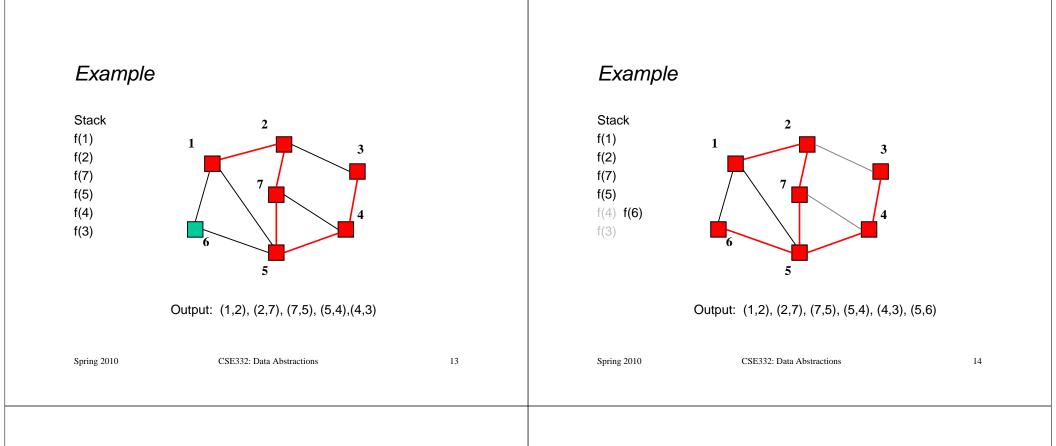


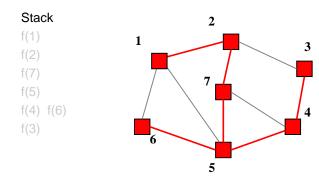
Output: (1,2), (2,7), (7,5)

Example



Output: (1,2), (2,7), (7,5), (5,4)





Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second approach

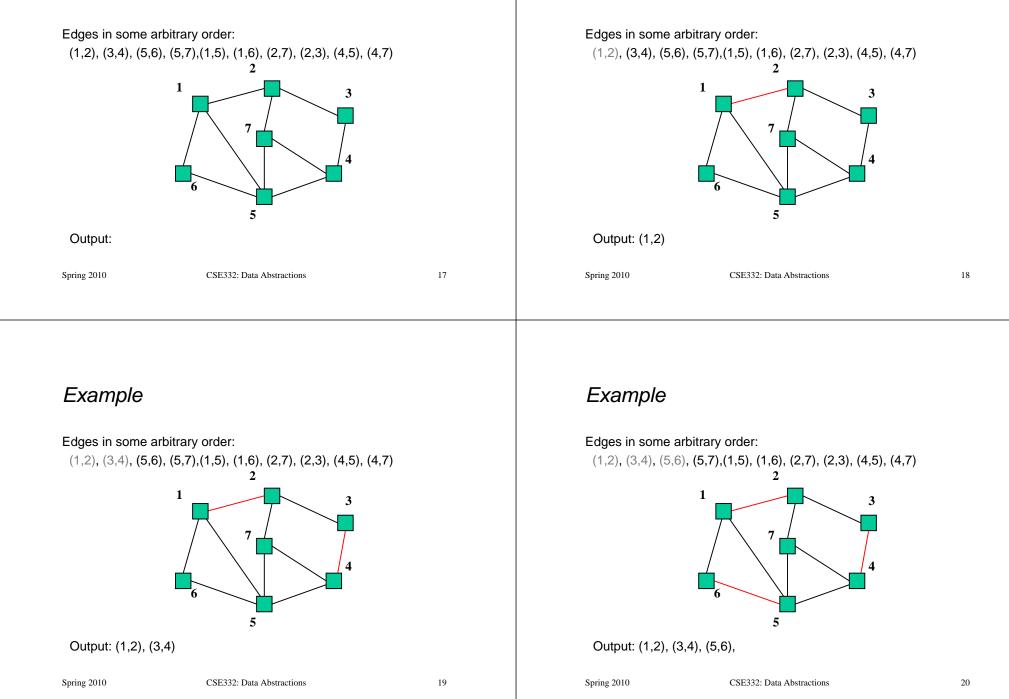
Iterate through edges; output any edge that doesn't create a cycle

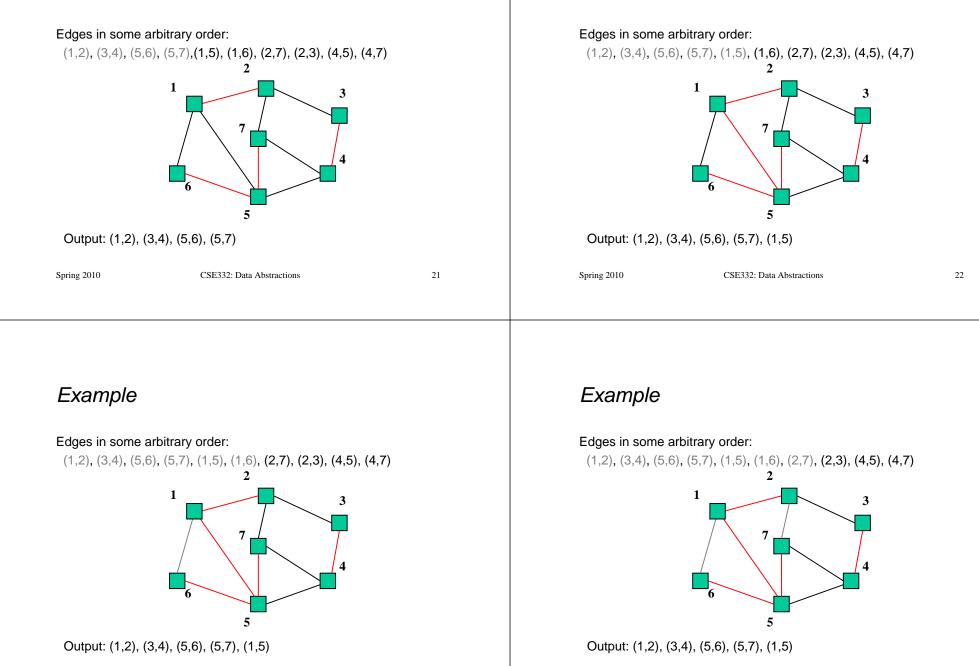
Correctness (hand-wavy):

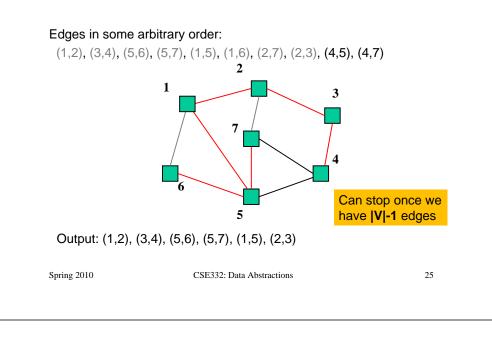
- Goal is to build an acyclic connected graph
- When we don't add an edge, adding it would not connect any nodes that aren't already connected in the output
- So we won't end up with less than a spanning tree

Efficiency:

- Depends on how quickly you can detect cycles
- Reconsider after the example







Using disjoint-set

Can use a disjoint-set implementation in ou	r spanning-tree
algorithm to detect cycles:	

Invariant: u and v are connected in output-so-far

iff \mathbf{u} and \mathbf{v} in the same set

- Initially, each node is in its own set
- When processing edge (u,v):
 - If find(u,v), then do not add the edge
 - Else add the edge and union(u,v)

Cycle detection

- To decide if an edge could form a cycle is O(|V|) since we may need to traverse all edges already in the output
- So overall algorithm would be O(|V||E|)
- But there is a faster way using the disjoint-set ADT
 - Initially, each item is in its own 1-element set
 - find(u,v): are u and v in the same set?
 - union(u,v): union (combine) the sets u and v are in

(Operations often presented slightly differently)

CSE332: Data Abstractions

Why do this?

- Using an ADT someone else wrote is easier than writing your own cycle detection
- It is also more efficient
- Chapter 8 of your textbook gives several implementations of different sophistication and asymptotic complexity
 - A slightly clever and easy-to-implement one is O(log n) for find and union (as we defined the operations here)
 - Lets our spanning tree algorithm be O(|E|log|V|)

[We skipped disjoint-sets as an example of "sometimes knowingan-ADT-exists and you-can-learn-it-on-your-own suffices"]

Summary so far

The spanning-tree problem

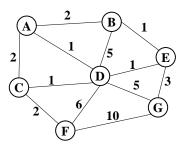
- Add nodes to partial tree approach is O(|E|)
- Add acyclic edges approach is O(|E|log |V|)
 - Using the disjoint-set ADT "as a black box"

But really want to solve the minimum-spanning-tree p

- Given a weighted undirected graph, give a spa minimum weight
- Same two approaches will work with minor mo

Punch line

 The spanning-tree problem Add nodes to partial tree approach is O(E) Add acyclic edges approach is O(E log V) Using the disjoint-set ADT "as a black box" But really want to solve the minimum-spanning-tree problem Given a weighted undirected graph, give a spanning tree of minimum weight Same two approaches will work with minor modifications Both will be O(E log V) 		Algorithm #1 Shortest-path is to Dijkstra's Algorithm as Minimum Spanning Tree is to Prim's Algorithm (Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack) Algorithm #2 Kruskal's Algorithm for Minimum Spanning Tree is Exactly our 2 nd approach to spanning tree but process edges in cost order			
Spring 2010	CSE332: Data Abstractions	29	Spring 2010	CSE332: Data Abstractions	30
-	o rithm Idea e by adding an edge from the "known	" vertices to	The algorian 1. For each noo	thm dev,setv.cost = ∞ and v.kn	own = false
	" vertices. Pick the edge with the sm "known" to "unknown."	allest weight	2. Choose any a) Mark v a b) For each		ost=w and
source." – But that's – Otherwise	picked the edge with closest known di not what we want here e identical to slides in lecture 17 if you don't beli		a) Select the b) Mark v as c) For each if (w u.c	<pre>ev are unknown nodes in the graph e unknown node v with lowest cost s known and add (v, v.prev) to c edge (v,u) with weight w, < u.cost) { cost = w; prev = v;</pre>	butput
Spring 2010	CSE332: Data Abstractions	31	Spring 2010	CSE332: Data Abstractions	32



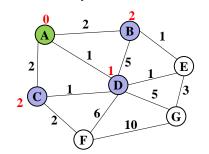
vertex	known?	cost	prev
А		??	
В		??	
С		??	
D		??	
Е		??	
F		??	
G		??	

Spring 2010

CSE332: Data Abstractions

33

Example



vertex	known?	cost	prev
А	Y	0	
В		2	A
С		2	Α
D		1	Α
Е		??	
F		??	
G		??	

Spring 2010

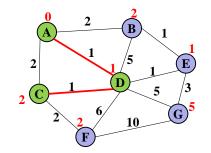
CSE332: Data Abstractions

34

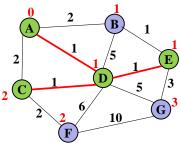
Example



vertex	known?	cost	prev
А	Y	0	
В		2	А
С		1	D
D	Y	1	А
Е		1	D
F		6	D
G		5	D



vertex	known?	cost	prev
А	Y	0	
В		2	А
С	Y	1	D
D	Y	1	А
E		1	D
F		2	С
G		5	D



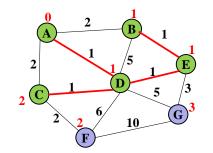
vertex	known?	cost	prev
А	Y	0	
В		1	Е
С	Y	1	D
D	Y	1	А
Е	Y	1	D
F		2	С
G		3	Е

Spring 2010

CSE332: Data Abstractions

37

Example



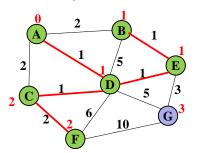
vertex	known?	cost	prev
А	Y	0	
В	Y	1	Е
С	Y	1	D
D	Y	1	А
E	Y	1	D
F		2	С
G		3	Е

Spring 2010

CSE332: Data Abstractions

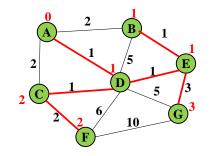
38

Example



vertex	known?	cost	prev
А	Y	0	
В	Y	1	Е
С	Y	1	D
D	Y	1	А
ш	Y	1	D
F	Y	2	С
G		3	Е

Example



vertex	known?	cost	prev
А	Y	0	
В	Y	1	Е
С	Y	1	D
D	Y	1	А
E	Y	1	D
F	Y	2	С
G	Y	3	E

Analysis

 A bit tricky Intuitively s Might return Run-time Same as D 	 Intuitively similar to Dijkstra Might return to this time permitting (unlikely) 		 Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem. But now consider the edges in order by weight So: Sort edges: O(E log E) Iterate through edges using union-find for cycle detection O(E log V) Somewhat better: Floyd's algorithm to build min-heap with edges O(E) 		
				bugh edges using union-find for cycle (ceMin to get next edge O(E log V)	Detection
				r worst-case asymptotically, but often s isidering all edges)	stop long
Spring 2010	CSE332: Data Abstractions	41	Spring 2010	CSE332: Data Abstractions	42

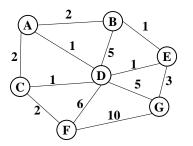
Pseudocode

- 1. Sort edges by weight (better: put in min-heap)
- 2. Each node in its own set
- 3. While output size < |V|-1
 - Consider next smallest edge (u,v)
 - if $\mathtt{find}(\mathtt{u},\mathtt{v})$ indicates \mathtt{u} and \mathtt{v} are in different sets
 - output (u,v)
 - union(u,v)

Recall invariant:

 $\mathbf u$ and $\mathbf v$ in same set if and only if connected in output-so-far

Example

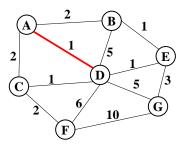


Kruskal's Algorithm

Edges in sorted order: 1: (A,D), (C,D), (B,E), (D,E) 2: (A,B), (C,F), (A,C) 3: (E,G) 5: (D,G), (B,D) 6: (D,F) 10: (F,G)

Output:

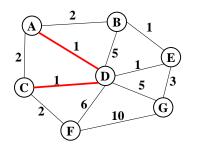
Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order: 1: (A,D), (C,D), (B,E), (D,E) 2: (A,B), (C,F), (A,C) 3: (E,G) 5: (D,G), (B,D) 6: (D,F) 10: (F,G)

Output: (A,D)

Example



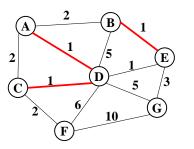
Edges in sorted order: 1: (A,D), (C,D), (B,E), (D,E) 2: (A,B), (C,F), (A,C) 3: (E,G) 5: (D,G), (B,D) 6: (D,F) 10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Spring 2010	CSE332: Data Abstractions	45	Spring 2010	CSE332: Data Abstractions	46

Example



Edges in sorted order:

(A,D), (C,D), (B,E), (D,E)
 (A,B), (C,F), (A,C)
 (E,G)
 (D,G), (B,D)
 (D,F)
 (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Example

2

С

2

R

10

D

E

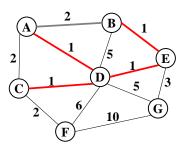
G

Edges in sorted order: 1: (A,D), (C,D), (B,E), (D,E) 2: (A,B), (C,F), (A,C) 3: (E,G) 5: (D,G), (B,D)

> 6: (D,F) 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

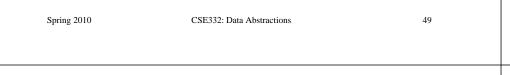
Note: At each step, the union/find sets are the trees in the forest



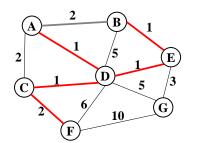
Edges in sorted order: 1: (A,D), (C,D), (B,E), (D,E) 2: (A,B), (C,F), (A,C) 3: (E,G) 5: (D,G), (B,D) 6: (D,F) 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest



Example



Edges in sorted order: 1: (A,D), (C,D), (B,E), (D,E) 2: (A,B), (C,F), (A,C) 3: (E,G) 5: (D,G), (B,D) 6: (D,F) 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

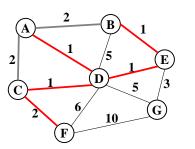
Note: At each step, the union/find sets are the trees in the forest

Spring 2010

CSE332: Data Abstractions

50

Example

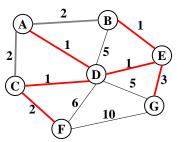


Edges in sorted order: 1: (A,D), (C,D), (B,E), (D,E) 2: (A,B), (C,F), (A,C)

3: (E,G) 5: (D,G), (B,D) 6: (D,F) 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest



Edges in sorted order:

(A,D), (C,D), (B,E), (D,E)
 (A,B), (C,F), (A,C)
 (E,G)
 (D,G), (B,D)
 (D,F)
 (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Correctness

Kruskal's algorithm is clever, simple, and efficient

- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree

- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose u and v are disconnected in Kruskal's result. Then there's a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

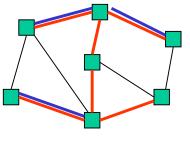
Second: There is no spanning tree with lower total cost...

Spring 2010	CSE332: Data Abstractions	53	Spring 2010

Staying a subset of **some** MST

Claim: **F** is a subset of *one or more* MSTs for the graph

So far: $F-\{e\} \subseteq T$:



Two disjoint cases:

- If $\{e\} \subseteq T$: Then $F \subseteq T$ and we're done
- Else **e** forms a cycle with some simple path (call it **p**) in **T**
 - Must be since T is a spanning tree

The inductive proof set-up

Let ${\bf F}$ (stands for "forest") be the set of edges Kruskal has added at some point during its execution.

Claim: **F** is a subset of *one or more* MSTs for the graph (Therefore, once **|F|=|V|-1**, we have an MST.)

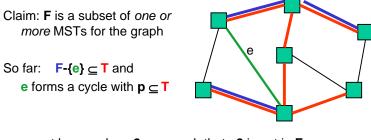
Proof: By induction on |F|

Base case: **|F|=0**: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the $(k+1)^{th}$ edge (call it e), there was some MST T such that F-{e} \subseteq T ...

CSE332: Data Abstractions

Staying a subset of some MST

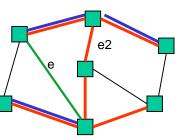


- There must be an edge e2 on p such that e2 is not in F
 Else Kruskal would not have added e
- Claim: e2.weight == e.weight

Staying a subset of **some** MST

Claim: **F** is a subset of *one or more* MSTs for the graph

So far: $F-\{e\} \subseteq T$ e forms a cycle with $p \subseteq T$ e2 on p is not in F



- Claim: e2.weight == e.weight
 - If e2.weight > e.weight, then T is not an MST because T-{e2}+{e} is a spanning tree with lower cost: contradiction
 - If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and F-{e} ⊆ T. But e2 is not in F: contradiction

Spring 2010	CSE332: Data Abstractions	57

Staying a subset of **some** MST

Claim: F is a subset of one or more MSTs for the graph
So far: F-{e} ⊆ T

e forms a cycle with p ⊆ T
e2 on p is not in F
e2.weight == e.weight

Claim: T-{e2}+{e} is an MST

It's a spanning tree because p-{e2}+{e} connects the same nodes as p
It's minimal because its cost equals cost of T, an MST

Since F ⊆ T-{e2}+{e}, F is a subset of one or more MSTs Done.

Spring 2010

CSE332: Data Abstractions