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“Scheduling note”

• “We now return to our interrupted program” on graphs
– Last “graph lecture” was lecture 17

• Shortest-path problem
• Dijkstra’s algorithm for graphs with non-negative weights

• Why this strange schedule?
– Needed to do parallelism and concurrency in time for project 

3 and homeworks 6 and 7
– But cannot delay all of graphs because of the CSE312 co-

requisite

• So: not the most logical order, but hopefully not a big deal
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Spanning trees

• A simple problem: Given a connected graph G=(V,E), find a 
minimal subset of the edges such that the graph is still connected
– A graph G2=(V,E2) such that G2 is connected and removing 

any edge from E2 makes G2 disconnected
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Observations

1. Any solution to this problem is a tree
– Recall a tree does not need a root; just means acyclic
– For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected

4. A tree with |V| nodes has |V|-1 edges
– So every solution to the spanning tree problem has |V|-1

edges
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Motivation

A spanning tree connects all the nodes with as few edges as possible

• Example: A “phone tree” so everybody gets the message and no 
unnecessary calls get made
– Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and 
we want a tree of least total cost 

• Example: Electrical wiring for a house or clock wires on a chip
• Example: A road network if you cared about asphalt cost rather 

than travel time
This is the minimum spanning tree problem

– Will do that next, after intuition from the simpler case
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Two approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal 
will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that doesn’t 
create a cycle
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Spanning tree via DFS
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spanning_tree(Graph G) {
for each node i: i.marked = false
for some node i: f(i)

}
f(Node i) {

i.marked = true
for each j adjacent to i:

if(!j.marked) {
add(i,j) to output
f(j) // DFS

}
}

Correctness: DFS reaches each node.  We add one edge to connect it
to the already visited nodes.  Order affects result, not correctness.

Time: O(|E|)

Example

Stack
f(1)

Spring 2010 8CSE332: Data Abstractions

1
2

3

4

5

6

7

Output:



Example

Stack
f(1)
f(2)
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Output:  (1,2)

Example

Stack
f(1)
f(2)
f(7)
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Output:  (1,2), (2,7)

Example

Stack
f(1)
f(2)
f(7)
f(5)

Spring 2010 11CSE332: Data Abstractions

1
2

3

4

5

6

7

Output:  (1,2), (2,7), (7,5)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
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Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)
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Output:  (1,2), (2,7), (7,5), (5,4),(4,3)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)  f(6)
f(3)
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)  f(6)
f(3)
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Output:  (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second approach

Iterate through edges; output any edge that doesn’t create a cycle

Correctness (hand-wavy):
– Goal is to build an acyclic connected graph
– When we don’t add an edge, adding it would not connect 

any nodes that aren’t already connected in the output
– So we won’t end up with less than a spanning tree

Efficiency:
– Depends on how quickly you can detect cycles
– Reconsider after the example
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Output: (1,2), (3,4)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Output: (1,2), (3,4), (5,6), (5,7) 

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Output: (1,2), (3,4), (5,6), (5,7), (1,5) 

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Output: (1,2), (3,4), (5,6), (5,7), (1,5) 

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Output: (1,2), (3,4), (5,6), (5,7), (1,5) 



Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)
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Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3) 

Can stop once we
have |V|-1 edges

Cycle detection

• To decide if an edge could form a cycle is O(|V|) since we may 
need to traverse all edges already in the output

• So overall algorithm would be O(|V||E|)

• But there is a faster way using the disjoint-set ADT
– Initially, each item is in its own 1-element set
– find(u,v): are u and v in the same set? 
– union(u,v): union (combine) the sets u and v are in

(Operations often presented slightly differently)
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Using disjoint-set

Can use a disjoint-set implementation in our spanning-tree 
algorithm to detect cycles:

Invariant: u and v are connected in output-so-far 
iff 

u and v in the same set

• Initially, each node is in its own set
• When processing edge (u,v):

– If find(u,v), then do not add the edge
– Else add the edge and union(u,v)
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Why do this?

• Using an ADT someone else wrote is easier than writing your 
own cycle detection

• It is also more efficient

• Chapter 8 of your textbook gives several implementations of 
different sophistication and asymptotic complexity
– A slightly clever and easy-to-implement one is O(log n) for 
find and union (as we defined the operations here)

– Lets our spanning tree algorithm be O(|E|log|V|)

[We skipped disjoint-sets as an example of “sometimes knowing-
an-ADT-exists and you-can-learn-it-on-your-own suffices”]
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Summary so far

The spanning-tree problem
– Add nodes to partial tree approach is O(|E|)
– Add acyclic edges approach is O(|E|log |V|)

• Using the disjoint-set ADT “as a black box”

But really want to solve the minimum-spanning-tree problem
– Given a weighted undirected graph, give a spanning tree of 

minimum weight
– Same two approaches will work with minor modifications
– Both will be O(|E|log |V|)
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Punch line

Algorithm #1
Shortest-path is to Dijkstra’s Algorithm

as
Minimum Spanning Tree is to Prim’s Algorithm

(Both based on expanding cloud of known vertices, basically using 
a priority queue instead of a DFS stack)

Algorithm #2
Kruskal’s Algorithm for Minimum Spanning Tree

is
Exactly our 2nd approach to spanning tree 

but process edges in cost order
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Prim’s Algorithm Idea

Idea: Grow a tree by adding an edge from the “known” vertices to 
the “unknown” vertices.  Pick the edge with the smallest weight 
that connects “known” to “unknown.”

Recall Dijkstra “picked the edge with closest known distance to the 
source.”
– But that’s not what we want here
– Otherwise identical
– Compare to slides in lecture 17 if you don’t believe me
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The algorithm
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1. For each node v, set  v.cost = ∞ and v.known = false
2. Choose any node v. 

a) Mark v as known
b) For each edge (v,u) with weight w, set u.cost=w and 

u.prev=v
3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (v,u) with weight w,

if(w < u.cost) {
u.cost = w;
u.prev = v;

}



Example
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Example
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Analysis

• Correctness ?? 
– A bit tricky
– Intuitively similar to Dijkstra
– Might return to this time permitting (unlikely)

• Run-time
– Same as Dijkstra
– O(|E|log |V|) using a priority queue
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Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like 
for the spanning tree problem.  
– But now consider the edges in order by weight

So: 
– Sort edges: O(|E|log |E|)
– Iterate through edges using union-find for cycle detection 

O(|E|log |V|)

Somewhat better:
– Floyd’s algorithm to build min-heap with edges O(|E|)
– Iterate through edges using union-find for cycle detection 

and deleteMin to get next edge O(|E|log |V|)
– (Not better worst-case asymptotically, but often stop long 

before considering all edges)
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Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1

– Consider next smallest edge (u,v)
– if find(u,v) indicates u and v are in different sets

• output (u,v)
• union(u,v)

Recall invariant: 
u and v in same set if and only if connected in output-so-far
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Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest



Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest



Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Example 
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Edges in sorted order:
1:  (A,D), (C,D), (B,E), (D,E)
2:  (A,B), (C,F), (A,C)
3:  (E,G)
5:  (D,G), (B,D)
6:  (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest



Correctness

Kruskal’s algorithm is clever, simple, and efficient
– But does it generate a minimum spanning tree?
– How can we prove it?

First: it generates a spanning tree
– Intuition: Graph started connected and we added every edge 

that did not create a cycle
– Proof by contradiction: Suppose u and v are disconnected in 

Kruskal’s result.  Then there’s a path from u to v in the initial 
graph with an edge we could add without creating a cycle.  
But Kruskal would have added that edge.  Contradiction.

Second: There is no spanning tree with lower total cost…
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The inductive proof set-up

Let F (stands for “forest”) be the set of edges Kruskal has added at 
some point during its execution.

Claim: F is a subset of one or more MSTs for the graph
(Therefore, once |F|=|V|-1, we have an MST.)

Proof: By induction on |F|

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the (k+1)th

edge (call it e), there was some MST T such that F-{e} ⊆ T …
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Staying a subset of some MST

Two disjoint cases: 
• If {e} ⊆ T: Then F ⊆ T and we’re done
• Else e forms a cycle with some simple path (call it p) in T

– Must be since T is a spanning tree
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Claim: F is a subset of one or 
more MSTs for the graph

So far: F-{e} ⊆ T:

Staying a subset of some MST

• There must be an edge e2 on p such that e2 is not in F
– Else Kruskal would not have added e

• Claim: e2.weight == e.weight
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Claim: F is a subset of one or 
more MSTs for the graph

So far: F-{e} ⊆ T and 
e forms a cycle with p ⊆ T

e



Staying a subset of some MST

• Claim: e2.weight == e.weight
– If e2.weight > e.weight, then T is not an MST because 

T-{e2}+{e} is a spanning tree with lower cost: contradiction
– If e2.weight < e.weight, then Kruskal would have already 

considered e2.  It would have added it since T has no cycles 
and F-{e} ⊆ T.  But e2 is not in F: contradiction
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Claim: F is a subset of one or 
more MSTs for the graph

So far: F-{e} ⊆ T
e forms a cycle with p ⊆ T 
e2 on p is not in F

e
e2

Staying a subset of some MST

• Claim:  T-{e2}+{e} is an MST
– It’s a spanning tree because p-{e2}+{e} connects the same 

nodes as p
– It’s minimal because its cost equals cost of T, an MST

• Since F ⊆ T-{e2}+{e},   F is a subset of one or more MSTs 
Done.
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Claim: F is a subset of one or 
more MSTs for the graph

So far: F-{e} ⊆ T
e forms a cycle with p ⊆ T 
e2 on p is not in F
e2.weight == e.weight

e
e2


