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Announcements

Project 1 posted
– Section materials on using Eclipse will be very useful if you 

have never used it
– (Could also start in a different environment if necessary)
– Section material on generics will be very useful for Phase B

Homework 1 posted

Feedback on typos is welcome
– Won’t announce every time I update posted materials with 

minor fixes
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Today

• Finish discussing queues

• Review math essential to algorithm analysis
– Proof by induction
– Powers of 2
– Exponents and logarithms

• Begin analyzing algorithms
– Using asymptotic analysis (continue next time)
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Mathematical induction

Suppose P(n) is some predicate (mentioning integer n)

– Example: n ≥ n/2 + 1

To prove P(n) for all integers n ≥ c, it suffices to prove
1. P(c) – called the “basis” or “base case”
2. If P(k) then P(k+1) – called the “induction step” or “inductive case”

Why we will care: 
To show an algorithm is correct or has a certain running time   no 
matter how big a data structure or input value is
(Our “n” will be the data structure or input size.)
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Example

P(n) = “the sum of the first n powers of 2 (starting at 0) is 2n-1”

Theorem: P(n) holds for all n ≥ 1
Proof: By induction on n
• Base case: n=1.  Sum of first 1 power of 2 is 20 , which equals 1.

And for n=1, 2n-1 equals 1.
• Inductive case:

– Assume the sum of the first k powers of 2 is 2k-1
– Show the sum of the first (k+1) powers of 2 is 2k+1-1
Using assumption, sum of the first (k+1) powers of 2 is
(2k-1) + 2(k+1)-1 = (2k-1) + 2k = 2k+1-1
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Powers of 2

• A bit is 0 or 1
• A sequence of n bits can represent 2n distinct things

– For example, the numbers 0 through 2n-1
• 210 is 1024 (“about a thousand”, kilo in CSE speak)
• 220 is “about a million”, mega in CSE speak
• 230 is “about a billion”, giga in CSE speak

Java: an int is 32 bits and signed, so “max int” is “about 2 billion”
a long is 64 bits and signed, so “max long” is 263-1
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Therefore…

Could give a unique id to…

• Every person in the U.S. with 29 bits

• Every person in the world with 33 bits

• Every person to have ever lived with 38 bits (estimate)

• Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, 
do you think you could guess it?
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Logarithms and Exponents

• Since so much is binary in CS log almost always means log2 
• Definition: log2 x = y if  x = 2y
• So, log2 1,000,000 = “a little under 20”
• Just as exponents grow very quickly, logarithms grow very slowly
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Properties of logarithms

• log(A*B) = log A + log B
– So log(Nk)= k log N

• log(A/B) = log A – log B

• log(log x) is written log log x
– Grows as slowly as 22 grows fast

• (log x)(log x) is written log2x
– It is greater than log x for all x > 2
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Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”
– And we are about to stop worrying about constant factors!
– In particular, log2 x = 3.22 log10 x
– In general, 

logB x = (logA x) / (logA B)
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Algorithm Analysis

As the “size” of an algorithm’s input grows
(integer, length of array, size of queue, etc.):

– How much longer does the algorithm take (time)
– How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care 
about “which curve we are like”

Separate issue: Algorithm correctness – does it produce the right 
answer for all inputs
– Usually more important, naturally

Spring 2010 14CSE332: Data Abstractions

Example

• What does this pseudocode return?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;

• Correctness: For any N ≥ 0, it returns…
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Example

• What does this pseudocode return?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;
• Correctness: For any N ≥ 0, it returns 3N(N+1)/2
• Proof: By induction on n

– P(n) = after outer for-loop executes n times, x holds   
3n(n+1)/2

– Base: n=0, returns 0
– Inductive: From P(k), x holds 3k(k+1)/2 after k iterations. 

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1) 
= (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2
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Example

• How long does this pseudocode run?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;
• Running time: For any N ≥ 0, 

– Assignments, additions, returns take “1 unit time”
– Loops take the sum of the time for their iterations

• So: 2 + 2*(number of times inner loop runs)
– And how many times is that…
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Example

• How long does this pseudocode run?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;
• The total number of loop iterations is N*(N+1)/2

– This is a very common loop structure, worth memorizing
– Proof is by induction on N, known for centuries
– This is proportional to N2 , and we say O(N2), “big-Oh of”

• For large enough N, the N and constant terms are 
irrelevant, as are the first assignment and return

• See plot… N*(N+1)/2 vs. just N2/2
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Lower-order terms don’t matter

N*(N+1)/2 vs. just N2/2
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Recurrence Equations 

• For running time, what the loops did was irrelevant, it was how 
many times they executed.

• Running time as a function of input size n (here loop bound):
T(n) = n + T(n-1)

(and T(0) = 2ish, but usually implicit that T(0) is some constant)

• Any algorithm with running time described by this formula is O(n2)

• “Big-Oh” notation also ignores the constant factor on the high-
order term, so 3N2 and 17N2 and (1/1000) N2  are all O(N2)
– As N grows large enough, no smaller term matters
– Next time: Many more examples + formal definitions
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Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n)         “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is an constant)
O(kn) exponential (where k is any constant > 1)

Pet peeve: “exponential” does not mean “grows really fast”, it 
means “grows at rate proportional to kn for some k>1”
– A savings account accrues interest exponentially (k=1.01?)
– If you don’t know k, you probably don’t know it’s exponential
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