

CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Dan Grossman Spring 2010

Announcements

Project 1 posted

- Section materials on using Eclipse will be very useful if you have never used it
- (Could also start in a different environment if necessary)
- Section material on generics will be very useful for Phase B

Homework 1 posted

Feedback on typos is welcome

 Won't announce every time I update posted materials with minor fixes

Spring 2010

CSE332: Data Abstractions

2

Today

- Finish discussing queues
- · Review math essential to algorithm analysis
 - Proof by induction
 - Powers of 2
 - Exponents and logarithms
- Begin analyzing algorithms
 - Using asymptotic analysis (continue next time)

Mathematical induction

Suppose *P*(*n*) is some predicate (mentioning integer *n*)

– Example: n ≥ n/2 + 1

To prove P(n) for all integers $n \ge c$, it suffices to prove

- 1. P(c) called the "basis" or "base case"
- 2. If P(k) then P(k+1) called the "induction step" or "inductive case"

Why we will care:

To show an algorithm is correct or has a certain running time *no matter how big a data structure or input value is* (Our "*n*" will be the data structure or input size.)

Example

P(n) = "the sum of the first *n* powers of 2 (starting at 0) is 2ⁿ-1" Theorem: P(n) holds for all $n \ge 1$ Proof: By induction on n • Base case: *n*=1. Sum of first 1 power of 2 is 2^o, which equals 1. And for n=1, $2^{n}-1$ equals 1. Inductive case: - Assume the sum of the first k powers of 2 is 2^{k-1} - Show the sum of the first (k+1) powers of 2 is $2^{k+1}-1$ Using assumption, sum of the first (k+1) powers of 2 is $(2^{k}-1) + 2^{(k+1)-1} = (2^{k}-1) + 2^{k} = 2^{k+1}-1$ Spring 2010 CSE332: Data Abstractions 5 Spring 2010

Therefore...

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Powers of 2

- A bit is 0 or 1
- A sequence of *n* bits can represent 2ⁿ distinct things - For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 263-1

CSE332: Data Abstractions

Logarithms and Exponents

- Since so much is binary in CS log almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

CSE332: Data Abstractions

6

Logarithms and Exponents

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

Logarithms and Exponents

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

Logarithms and Exponents

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

Properties of logarithms

- log(A*B) = log A + log B
 S0 log(N^k) = k log N
- log(A/B) = log A log B
- log(log x) is written log log x
 Grows as slowly as 2^{2y} grows fast
- (log x)(log x) is written log²x
 It is greater than log x for all x > 2

Log base doesn't matter much!

 "Any base B log is equivalent to base 2 log within a constant factor" And we are about to stop worrying about constant factors! In particular, log₂ x = 3.22 log₁₀ x In general, log_B x = (log_A x) / (log_A B) 			 As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.): How much longer does the algorithm take (time) How much more memory does the algorithm need (space) Because the curves we saw are so different, we often only care about "which curve we are like" Separate issue: Algorithm <i>correctness</i> – does it produce the right answer for all inputs Usually more important, naturally 		
Spring 2010	CSE332: Data Abstractions	13	Spring 2010	CSE332: Data Abstractions	14
 What does th What does th x := 0; for i=1 for j: x	<pre>is pseudocode return? to N do =1 to i do := x + 3; x; For any N ≥ 0, it returns</pre>		 What does this x := 0; for i=1 for j= x : return x Correctness: F Proof: By indu - P(n) = afte 3n(n+1)/ - Base: n=0. 	s pseudocode return? to N do 1 to i do = $x + 3$; For any N ≥ 0, it returns 3N(N+1)/2 ction on <i>n</i> r outer for-loop executes <i>n</i> times, x he 2 returns 0	olds
Spring 2010	CSE332: Data Abstractions	15	 Inductive: Next iterati = (3k(k+1) Spring 2010 	From $P(k)$, x holds $3k(k+1)/2$ after k it on adds $3(k+1)$, for total of $3k(k+1)/2$) + $6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)$ CSE332: Data Abstractions	erations. + 3(k+1))(k+2)/2 ¹⁶

Algorithm Analysis

Example

```
How long does this pseudocode run?
x := 0;
for i=1 to N do
for j=1 to i do
x := x + 3;
return x;
Running time: For any N ≥ 0,
```

- Assignments, additions, returns take "1 unit time"
- Loops take the sum of the time for their iterations
- So: 2 + 2*(number of times inner loop runs)
 - And how many times is that...

Example

- How long does this pseudocode run? x := 0; for i=1 to N do for j=1 to i do x := x + 3; return x;
 The total number of loop iterations is N*(N+1)/2 - This is a very common loop structure, worth memorizing - Proof is by induction on N, known for centuries
 - This is proportional to N^2 , and we say $O(N^2)$, "big-Oh of"
 - For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 - See plot... N*(N+1)/2 vs. just N²/2

```
Spring 2010CSE332: Data Abstractions17Spring 2010CSE332: Data Abstractions18
```

Lower-order terms don't matter

N*(N+1)/2 vs. just N²/2

Recurrence Equations

- For running time, what the loops did was irrelevant, it was how many times they executed.
- Running time as a function of input size *n* (here loop bound): T(n) = n + T(n-1)

(and T(0) = 2ish, but usually implicit that T(0) is some constant)

- Any algorithm with running time described by this formula is $O(n^2)$
- "Big-Oh" notation also ignores the constant factor on the highorder term, so 3N² and 17N² and (1/1000) N² are all O(N²)
 - As N grows large enough, no smaller term matters
 - Next time: Many more examples + formal definitions

Big-O: Common Names

O(1) O(log <i>n</i>)	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>) logarithmic				
O(<i>n</i>)	linear				
O(n log n)	"n log <i>n</i> "				
O(<i>n</i> ²)	quadratic				
O(<i>n</i> ³)	cubic				
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is an constant)				
<i>O</i> (<i>k</i> ⁿ)	exponential (where <i>k</i> is any constant > 1)				
 Pet peeve: "exponential" does not mean "grows really fast", it means "grows at rate proportional to kⁿ for some k>1" A savings account accrues interest exponentially (k=1.01?) If you don't know k, you probably don't know it's exponential 					

Spring 2010	CSE332: Data Abstractions	21