

CSE332: Data Abstractions

Lecture 11: Hash Tables

Dan Grossman Spring 2010

Hash Tables: Review

Aim for constant-time (i.e., O(1)) find, insert, and delete
 "On average" under some reasonable assumptions

Hash Tables: A Different ADT?

- In terms of a Dictionary ADT for just insert, find, delete, hash tables and balanced trees are just different data structures
 - Hash tables O(1) on average (assuming few collisions)
 - Balanced trees O(log n) worst-case
- Constant-time is better, right?
 - Yes, but you need "hashing to behave" (collisions)
 - Yes, but findMin, findMax, predecessor, and successor go from O(log n) to O(n)
 - · Why your textbook considers this to be a different ADT
 - Not so important to argue over the definitions

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution - Ideas?

Separate Chaining

Separate Chaining

8

9

7

8

9

Thoughts on chaining

- Worst-case time for find: linear
 - But only with really bad luck or bad hash function
 - So not worth avoiding (e.g., with balanced trees at each bucket)
- Beyond asymptotic complexity, some "data-structure engineering" may be warranted
 - Linked list vs. array vs. chunked list (lists should be short!)
 - Move-to-front (cf. Project 2)
 - Better idea: Leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
 - A time-space trade-off...

Time vs. space (constant factors only here)

More rigorous chaining analysis

Definition: The load factor, λ , of a hash table is

 $\lambda = \frac{N}{TableSize} \quad \leftarrow number of elements$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by *random* finds, then on average:

- Each unsuccessful find compares against _____ items
- Each successful find compares against _____ items

More rigorous chaining analysis

Definition: The load factor, λ , of a hash table is

 $\lambda = \frac{N}{TableSize} \quad \leftarrow number of elements$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by *random* finds, then on average:

- Each unsuccessful find compares against λ items
- Each successful find compares against $\lambda/2$ items

Spring 2010	CSE332: Data Abstractions	13	Spring 2010	CSE332: Data Abstractions	14

Alternative: Use empty space in the table

- Another simple idea: If h(key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	/
1	/
2	/
3	/
4	/
5	/
6	/
7	/
8	38
9	/

Alternative: Use empty space in the table

- Another simple idea: If h(key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	/
1	/
2	/
3	/
4	/
5	/
6	/
7	/
8	38
9	19

Alternative: Use empty space in the table

- Another simple idea: If h(key) is already full,
 try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	8
1	109
2	10
3	/
4	/
5	/
6	/
7	/
8	38
9	19

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table.

Trying the next spot is called probing

- Our ith probe was (h(key) + i) % TableSize
 - This is called linear probing
- In general have some probe function f and use h(key) + f(i) % TableSize

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more O(1)

Spring 2010

Terminology

We and the book use the terms

- "chaining" or "separate chaining"
- "open addressing"

Very confusingly,

- "open hashing" is a synonym for "chaining"
- "closed hashing" is a synonym for "open addressing"

(If it makes you feel any better, most trees in CS grow upside-down ⁽ⁱⁱⁱ⁾)

Spring 2010 CSE332: Data Abstractions 21 Spring 2010 CSE332: Data Abstractions 22

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (a good thing)

- Tends to produce clusters, which lead to long probing sequences
- Called primary clustering
- Saw this starting in our example

[R. Sedgewick] 23

CSE332: Data Abstractions

Other operations

Okay, so insert finds an open table position using a probe function

What about find?

- Must use same probe function to "retrace the trail" and find the data
- Unsuccessful search when reach empty position

What about delete?

- Must use "lazy" deletion. Why?
- But here just means "no data here, but don't stop probing"
- Note: delete with chaining is plain-old list-remove

Analysis of Linear Probing

- Trivial fact: For any $\lambda < 1$, linear probing will find an empty slot - It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove: Average # of probes given λ (in the limit as **TableSize** $\rightarrow \infty$)
 - Unsuccessful search:

$$\frac{1}{2}\left(1+\frac{1}{\left(1-\lambda\right)^2}\right)$$

 $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$

- Successful search:
- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)

In a chart

- Linear-probing performance degrades rapidly as table gets full
 (Formula assumes "large table" but point remains)
- By comparison, chaining performance is linear in λ and has no trouble with λ>1

Quadratic probing

- We can avoid primary clustering by changing the probe function
- A common technique is quadratic probing:
 - $-f(i) = i^2$
 - So probe sequence is:
 - Oth probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize
 - ...
 - ith probe: (h(key) + i²) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

```
Spring 2010
```

2

3

4

5

6

7

8

9

CSE332: Data Abstractions

Quadratic Probing Example

Quadratic Probing Example

26

Quadratic Probing Example

Quadratic Probing Example

Another Quadratic Probing Example

Another Quadratic Probing Example

Another Quadratic Probing Example

TableSize = 7	
Insert:	

76

40

48

5

55

47

t:	
	(76 % 7 = 6)
	(40 % 7 = 5)
	(48 % 7 = 6)

(5%7=5)

(55 % 7 = 6)

(47 % 7 = 5)

Another Quadratic Probing Example

(76 % 7 = 6)

(40 % 7 = 5)

(48 % 7 = 6)

(5%7=5)

(55 % 7 = 6)

(47 % 7 = 5)

Another Quadratic Probing Example

Another Quadratic Probing Example

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood
- · But it's no help if keys initially hash to the same index
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Double hashing

Idea:

- Given two good hash functions h and g, it is very unlikely that for some key, h(key) == g(key)
- So make the probe function f(i) = i*g(key)

Probe sequence:

- 0th probe: h(key) % TableSize
- 1st probe: (h(key) + g(key)) % TableSize
- 2nd probe: (h(key) + 2*g(key)) % TableSize
- 3rd probe: (h(key) + 3*g(key)) % TableSize
- ...
- ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) can't be 0

Spring 2010	

CSE332: Data Abstractions

42

Double-hashing analysis

 Intuition: Since each probe is "jumping" by g(key) each time, we "leave the neighborhood" and "go different places from other initial collisions"

CSE332: Data Abstractions

- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
 - It is known that this cannot happen in at least one case:
 - h(key) = key % p
 - •g(key) = q (key % q)
 - 2 < q < p
 - p and q are prime

More double-hashing facts

- Assume "uniform hashing"
 - Means probability of g(key1) % p == g(key2) % p is 1/p
- Non-trivial facts we won't prove: Average # of probes given λ (in the limit as **TableSize** $\rightarrow \infty$)
 - Unsuccessful search (intuitive):
- $\frac{1}{1-\lambda}$
- Successful search (less intuitive):
- $\frac{1}{\lambda} \log_{e} \left(\frac{1}{1 \lambda} \right)$
- Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad

CSE332: Data Abstractions

Spring 2010

41

Spring 2010

Where are we?

- Chaining is easy
 - insert, find, delete proportion to load factor on average
- Open addressing uses probe functions, has clustering issues as table gets full
 - Why use it:
 - Less memory allocation?
 - Easier data representation?
- Now:
 - Growing the table when it gets too full
 - Relation between hashing/comparing and connection to Java

Spring 2010

CSE332: Data Abstractions

46

Rehashing

- Like with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything over
- Especially with chaining, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?</p>
 - Consider average or max size of non-empty chains?
 - For open addressing, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except, uhm, that won't be prime!
 - So go about twice-as-big
 - Can have a list of prime numbers in your code since you won't grow more than 20-30 times

More on rehashing

- We double the size (rather than "add 1000") to get good amortized guarantees (still promising to prove that later ⁽³⁾)
- But one resize is an *O*(*n*) operation, involving *n* calls to the hash function (1 for each insert in the new table)
- Space/time tradeoff: Could store h(key) with each data item, but since rehashing is rare, this is probably a poor use of space
 And growing the table is still O(n)

Hashing and comparing

- Haven't emphasized enough for a find or a delete of an item of type **E**, we hash **E**, but then as we go through the chain or keep probing, we have to *compare* each item we see to **E**.
- · So a hash table needs a hash function and a comparator
 - In Project 2, you'll use two function objects
 - The Java standard library uses a more OO approach where each object has an equals method and a hashCode method:

Equal objects must hash the same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy...
- OO way of saying it: If a.equals(b), then we must require a.hashCode()==b.hashCode()
- Function object way of saying i: If c.compare(a,b) == 0, then we must require h.hash(a) == h.hash(b)
- Why is this essential?

```
Spring 2010
```

Spring 2010

CSE332: Data Abstractions

Java bottom line

- Lots of Java libraries use hash tables, perhaps without your knowledge
- So: If you ever override equals, you need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals

Bad Example

• Think about using a hash table holding points

```
class PolarPoint {
  double r = 0.0;
  double theta = 0.0;
  void addToAngle(double theta2) { theta+=theta2; }
...
  boolean equals(Object otherObject) {
    if(this==otherObject) return true;
    if(otherObject==null) return false;
    if(getClass()!=other.getClass()) return false;
    PolarPoint other = (PolarPoint)otherObject;
    double angleDiff =
        (theta - other.theta) % (2*Math.PI);
    double rDiff = r - other.r;
    return Math.abs(angleDiff) < 0.0001
        && Math.abs(rDiff) < 0.0001;
    }
    // wrong: must override hashCode!
}</pre>
```

49

50

By the way: comparison has rules too

- We didn't emphasize some important "rules" about comparison functions for:
 - all our dictionaries
 - sorting (next major topic)

In short, comparison must impose a consistent, total ordering: For all a, b, and c,

- If compare(a,b) < 0, then compare(b,a) > 0
- If compare(a,b) == 0, then compare(b,a) == 0
- If compare(a,b) < 0 and compare(b,c) < 0,
 then compare(a,c) < 0</pre>

Final word on hashing

- The hash table is one of the most important data structures - Supports only find, insert, and delete efficiently
- Important to use a good hash function
- Important to keep hash table at a good size
- Side-comment: hash functions have uses beyond hash tables
 Examples: Cryptography, check-sums

Spring 2010	CSE332: Data Abstractions	53	Spring 2010	CSE332: Data Abstractions	54