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Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find, insert, and delete
– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size
– But growable as we’ll see
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Hash Tables: A Different ADT?

• In terms of a Dictionary ADT for just insert, find, delete, 
hash tables and balanced trees are just different data structures
– Hash tables O(1) on average (assuming few collisions)
– Balanced trees O(log n) worst-case

• Constant-time is better, right?
– Yes, but you need “hashing to behave” (collisions)
– Yes, but findMin, findMax, predecessor, and 
successor go from O(log n) to O(n)

• Why your textbook considers this to be a different ADT
• Not so important to argue over the definitions
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Collision resolution

Collision: 
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
– Ideas?
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Separate Chaining
Chaining: All keys that map to the same 

table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with 
mod hashing and TableSize = 10
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Separate Chaining
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10 / Chaining: All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with 
mod hashing and TableSize = 10

Separate Chaining
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Chaining: All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with 
mod hashing and TableSize = 10

Separate Chaining
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Chaining: All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with 
mod hashing and TableSize = 10



Separate Chaining

Spring 2010 9CSE332: Data Abstractions

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with 
mod hashing and TableSize = 10

Separate Chaining
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Chaining: All keys that map to the same 
table location are kept in a list    
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with 
mod hashing and TableSize = 10

Thoughts on chaining

• Worst-case time for find: linear
– But only with really bad luck or bad hash function
– So not worth avoiding (e.g., with balanced trees at each 

bucket)

• Beyond asymptotic complexity, some “data-structure 
engineering” may be warranted
– Linked list vs. array vs. chunked list (lists should be short!)
– Move-to-front (cf. Project 2)
– Better idea: Leave room for 1 element (or 2?) in the table 

itself, to optimize constant factors for the common case
• A time-space trade-off…
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Time vs. space (constant factors only here)
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More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is
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N
TableSize

λ =
← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against ____ items
• Each successful find compares against _____ items

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is
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N
TableSize

λ =
← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against λ items
• Each successful find compares against λ / 2 items

Alternative: Use empty space in the table

• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10

Spring 2010 15CSE332: Data Abstractions

0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 /

Alternative: Use empty space in the table
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• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10



Alternative: Use empty space in the table
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0 8
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9 19

• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table
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0 8
1 109
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 19

• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table
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0 8
1 109
2 10
3 /
4 /
5 /
6 /
7 /
8 38
9 19

• Another simple idea: If h(key) is already full, 
– try (h(key) + 1) % TableSize.  If full,
– try (h(key) + 2) % TableSize.  If full,
– try (h(key) + 3) % TableSize.  If full…

• Example: insert 38, 19, 8, 109, 10

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a 
sequence of other positions in the table.

Trying the next spot is called probing
– Our ith probe was (h(key) + i) % TableSize

• This is called linear probing
– In general have some probe function f and use              
h(key) + f(i) % TableSize

Open addressing does poorly with high load factor λ
– So want larger tables
– Too many probes means no more O(1)
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Terminology

We and the book use the terms
– “chaining” or “separate chaining”
– “open addressing”

Very confusingly,
– “open hashing” is a synonym for “chaining”
– “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better, 
most trees in CS grow upside-down ☺)
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Other operations

Okay, so insert finds an open table position using a probe function

What about find?
– Must use same probe function to “retrace the trail” and find the 

data
– Unsuccessful search when reach empty position

What about delete?
– Must use “lazy” deletion.  Why?
– But here just means “no data here, but don’t stop probing”
– Note: delete with chaining is plain-old list-remove
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(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe 
function is quick to compute (a good thing)
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[R. Sedgewick]

Tends to produce 
clusters, which lead 
to long probing 
sequences

• Called primary 
clustering

• Saw this starting in 
our example

Analysis of Linear Probing

• Trivial fact: For any λ < 1, linear probing will find an empty slot
– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
Average # of probes given λ (in the limit as TableSize→∞ )
– Unsuccessful search:

– Successful search:  

• This is pretty bad: need to leave sufficient empty space in the 
table to get decent performance (see chart)
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In a chart

• Linear-probing performance degrades rapidly as table gets full
– (Formula assumes “large table” but point remains)

• By comparison, chaining performance is linear in λ and has no 
trouble with λ>1
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Quadratic probing

• We can avoid primary clustering by changing the probe function

• A common technique is quadratic probing:
– f(i) = i2
– So probe sequence is:

• 0th probe:  h(key) % TableSize
• 1st probe: (h(key) + 1) % TableSize
• 2nd probe: (h(key) + 4) % TableSize
• 3rd probe: (h(key) + 9) % TableSize
• …
• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”
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Quadratic Probing Example
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0
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5
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7
8
9

TableSize=10
Insert: 
89
18
49
58
79

Quadratic Probing Example
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Insert: 
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18
49
58
79



Quadratic Probing Example
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0
1
2
3
4
5
6
7
8 18
9 89

TableSize=10
Insert: 
89
18
49
58
79

Quadratic Probing Example
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0 49
1
2
3
4
5
6
7
8 18
9 89

TableSize=10
Insert: 
89
18
49
58
79

Quadratic Probing Example
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0 49
1
2 58
3
4
5
6
7
8 18
9 89

TableSize=10
Insert: 
89
18
49
58
79

Quadratic Probing Example
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0 49
1
2 58
3 79
4
5
6
7
8 18
9 89

TableSize=10
Insert: 
89
18
49
58
79



Another Quadratic Probing Example
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TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0
1
2
3
4
5
6

Another Quadratic Probing Example
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TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0
1
2
3
4
5
6 76

Another Quadratic Probing Example
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TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0
1
2
3
4
5 40
6 76

Another Quadratic Probing Example
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TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0 48
1
2
3
4
5 40
6 76



Another Quadratic Probing Example
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TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0 48
1
2 5
3
4
5 40
6 76

Another Quadratic Probing Example
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TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0 48
1
2 5
3 55
4
5 40
6 76

Another Quadratic Probing Example
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TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48                   (48 % 7 = 6)
5                     (  5 % 7 = 5)
55                   (55 % 7 = 6)
47                   (47 % 7 = 5)

0 48
1
2 5
3 55
4
5 40
6 76

Uh-oh: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6
• Excel shows takes “at least” 50 probes and a pattern
• Proof uses induction and  (n2+5) % 7 = ((n-7)2+5) % 7

• In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k

From bad news to good news

• The bad news is: After TableSize quadratic probes, we will just 
cycle through the same indices

• The good news: 
– Assertion #1: If T = TableSize is prime and λ < ½, then 

quadratic probing will find an empty slot in at most T/2 probes

– Assertion #2: For prime T and 0 ≤ i,j ≤ T/2 where i ≠ j,
(h(key) + i2) % T ≠ (h(key) + j2) % T

– Assertion #3: Assertion #2 is the “key fact” for proving 
Assertion #1

• So: If you keep λ < ½, no need to detect cycles
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Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: no 
problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index
– Called secondary clustering

• Can avoid secondary clustering with a probe function that 
depends on the key: double hashing…
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Double hashing

Idea: 
– Given two good hash functions h and g, it is very unlikely 

that for some key,  h(key) == g(key)
– So make the probe function f(i) = i*g(key)

Probe sequence:
• 0th probe:  h(key) % TableSize
• 1st probe:  (h(key) + g(key)) % TableSize
• 2nd probe: (h(key) + 2*g(key)) % TableSize
• 3rd probe: (h(key) + 3*g(key)) % TableSize
• …
• ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) can’t be 0
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Double-hashing analysis

• Intuition: Since each probe is “jumping” by g(key) each time, 
we “leave the neighborhood” and “go different places from other 
initial collisions”

• But we could still have a problem like in quadratic probing where 
we are not “safe” (infinite loop despite room in table)
– It is known that this cannot happen in at least one case:

• h(key) = key % p
• g(key) = q – (key % q)
• 2 < q < p
• p and q are prime
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More double-hashing facts

• Assume “uniform hashing”
– Means probability of g(key1) % p == g(key2) % p is 
1/p

• Non-trivial facts we won’t prove:
Average # of probes given λ (in the limit as TableSize→∞ )
– Unsuccessful search (intuitive):

– Successful search (less intuitive):

• Bottom line: unsuccessful bad (but not as bad as linear probing), 
but successful is not nearly as bad
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Charts
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Where are we?

• Chaining is easy
– insert, find, delete proportion to load factor on average

• Open addressing uses probe functions, has clustering issues as 
table gets full
– Why use it:

• Less memory allocation? 
• Easier data representation?

• Now: 
– Growing the table when it gets too full
– Relation between hashing/comparing and connection to Java
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Rehashing

• Like with array-based stacks/queues/lists, if table gets too full, 
create a bigger table and copy everything over

• Especially with chaining, we get to decide what “too full” means
– Keep load factor reasonable (e.g., < 1)?
– Consider average or max size of non-empty chains?
– For open addressing, half-full is a good rule of thumb

• New table size
– Twice-as-big is a good idea, except, uhm, that won’t be prime!
– So go about twice-as-big 
– Can have a list of prime numbers in your code since you won’t 

grow more than 20-30 times
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More on rehashing

• We double the size (rather than “add 1000”) to get good 
amortized guarantees (still promising to prove that later ☺)

• But one resize is an O(n) operation, involving n calls to the hash 
function (1 for each insert in the new table)

• Space/time tradeoff: Could store h(key) with each data item, 
but since rehashing is rare, this is probably a poor use of space
– And growing the table is still O(n)
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Hashing and comparing

• Haven’t emphasized enough for a find or a delete of an item of 
type E, we hash E, but then as we go through the chain or keep 
probing, we have to compare each item we see to E.

• So a hash table needs a hash function and a comparator
– In Project 2, you’ll use two function objects
– The Java standard library uses a more OO approach where 

each object has an equals method and a hashCode
method:
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class Object { 
boolean equals(Object o) {…}
int hashCode() {…}
…

}

Equal objects must hash the same

• The Java library (and your project hash table) make a very 
important assumption that clients must satisfy…

• OO way of saying it:
If a.equals(b), then we must require 
a.hashCode()==b.hashCode()

• Function object way of saying i:
If c.compare(a,b) == 0, then we must require
h.hash(a) == h.hash(b)

• Why is this essential?
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Java bottom line
• Lots of Java libraries use hash tables, perhaps without your 

knowledge

• So: If you ever override equals, you need to override 
hashCode also in a consistent way
– See CoreJava book, Chapter 5 for other “gotchas” with 
equals
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Bad Example
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class PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle(double theta2) { theta+=theta2; }
…
boolean equals(Object otherObject) {

if(this==otherObject) return true;
if(otherObject==null) return false;
if(getClass()!=other.getClass()) return false;
PolarPoint other = (PolarPoint)otherObject;
double angleDiff = 

(theta – other.theta) % (2*Math.PI);
double rDiff = r – other.r;
return Math.abs(angleDiff) < 0.0001

&& Math.abs(rDiff) < 0.0001;
}
// wrong: must override hashCode!

}

• Think about using a hash table holding points



By the way: comparison has rules too

We didn’t emphasize some important “rules” about comparison 
functions for:
– all our dictionaries
– sorting (next major topic)

In short, comparison must impose a consistent, total ordering:
For all a, b, and c,

– If compare(a,b) < 0, then compare(b,a) > 0
– If compare(a,b) == 0, then compare(b,a) == 0
– If compare(a,b) < 0 and compare(b,c) < 0,                        

then compare(a,c) < 0
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Final word on hashing

• The hash table is one of the most important data structures
– Supports only find, insert, and delete efficiently

• Important to use a good hash function

• Important to keep hash table at a good size

• Side-comment: hash functions have uses beyond hash tables
– Examples: Cryptography, check-sums
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