
CSE332: Data Abstractions

Lecture 11: Hash Tables

Dan Grossman
Spring 2010

Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find, insert, and delete
– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size
– But growable as we’ll see

Spring 2010 2CSE332: Data Abstractions

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

Hash Tables: A Different ADT?

• In terms of a Dictionary ADT for just insert, find, delete,
hash tables and balanced trees are just different data structures
– Hash tables O(1) on average (assuming few collisions)
– Balanced trees O(log n) worst-case

• Constant-time is better, right?
– Yes, but you need “hashing to behave” (collisions)
– Yes, but findMin, findMax, predecessor, and
successor go from O(log n) to O(n)

• Why your textbook considers this to be a different ADT
• Not so important to argue over the definitions

Spring 2010 3CSE332: Data Abstractions

Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
– Ideas?

Spring 2010 4CSE332: Data Abstractions

Separate Chaining
Chaining: All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Spring 2010 5CSE332: Data Abstractions

0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /

Separate Chaining

Spring 2010 6CSE332: Data Abstractions

0
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 /
9 /

10 / Chaining: All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

Spring 2010 7CSE332: Data Abstractions

0
1 /
2
3 /
4 /
5 /
6 /
7 /
8 /
9 /

10 /

22 /

Chaining: All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

Spring 2010 8CSE332: Data Abstractions

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

22 /

107 /

Chaining: All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

Spring 2010 9CSE332: Data Abstractions

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

Spring 2010 10CSE332: Data Abstractions

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

42

107 /

12 22 /

Chaining: All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Thoughts on chaining

• Worst-case time for find: linear
– But only with really bad luck or bad hash function
– So not worth avoiding (e.g., with balanced trees at each

bucket)

• Beyond asymptotic complexity, some “data-structure
engineering” may be warranted
– Linked list vs. array vs. chunked list (lists should be short!)
– Move-to-front (cf. Project 2)
– Better idea: Leave room for 1 element (or 2?) in the table

itself, to optimize constant factors for the common case
• A time-space trade-off…

Spring 2010 11CSE332: Data Abstractions

Time vs. space (constant factors only here)

Spring 2010 12CSE332: Data Abstractions

0
1 /
2
3 /
4 /
5 /
6 /
7
8 /
9 /

10 /

42

107 /

12 22 /

0 10 /
1 / X
2 42
3 / X
4 / X
5 / X
6 / X
7 107 /
8 / X
9 / X

12 22 /

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

Spring 2010 13CSE332: Data Abstractions

N
TableSize

λ =
← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against ____ items
• Each successful find compares against _____ items

More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

Spring 2010 14CSE332: Data Abstractions

N
TableSize

λ =
← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against λ items
• Each successful find compares against λ / 2 items

Alternative: Use empty space in the table

• Another simple idea: If h(key) is already full,
– try (h(key) + 1) % TableSize. If full,
– try (h(key) + 2) % TableSize. If full,
– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Spring 2010 15CSE332: Data Abstractions

0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 /

Alternative: Use empty space in the table

Spring 2010 16CSE332: Data Abstractions

0 /
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 19

• Another simple idea: If h(key) is already full,
– try (h(key) + 1) % TableSize. If full,
– try (h(key) + 2) % TableSize. If full,
– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Spring 2010 17CSE332: Data Abstractions

0 8
1 /
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 19

• Another simple idea: If h(key) is already full,
– try (h(key) + 1) % TableSize. If full,
– try (h(key) + 2) % TableSize. If full,
– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Spring 2010 18CSE332: Data Abstractions

0 8
1 109
2 /
3 /
4 /
5 /
6 /
7 /
8 38
9 19

• Another simple idea: If h(key) is already full,
– try (h(key) + 1) % TableSize. If full,
– try (h(key) + 2) % TableSize. If full,
– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Spring 2010 19CSE332: Data Abstractions

0 8
1 109
2 10
3 /
4 /
5 /
6 /
7 /
8 38
9 19

• Another simple idea: If h(key) is already full,
– try (h(key) + 1) % TableSize. If full,
– try (h(key) + 2) % TableSize. If full,
– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table.

Trying the next spot is called probing
– Our ith probe was (h(key) + i) % TableSize

• This is called linear probing
– In general have some probe function f and use
h(key) + f(i) % TableSize

Open addressing does poorly with high load factor λ
– So want larger tables
– Too many probes means no more O(1)

Spring 2010 20CSE332: Data Abstractions

Terminology

We and the book use the terms
– “chaining” or “separate chaining”
– “open addressing”

Very confusingly,
– “open hashing” is a synonym for “chaining”
– “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down ☺)

Spring 2010 21CSE332: Data Abstractions

Other operations

Okay, so insert finds an open table position using a probe function

What about find?
– Must use same probe function to “retrace the trail” and find the

data
– Unsuccessful search when reach empty position

What about delete?
– Must use “lazy” deletion. Why?
– But here just means “no data here, but don’t stop probing”
– Note: delete with chaining is plain-old list-remove

Spring 2010 22CSE332: Data Abstractions

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (a good thing)

Spring 2010 23CSE332: Data Abstractions

[R. Sedgewick]

Tends to produce
clusters, which lead
to long probing
sequences

• Called primary
clustering

• Saw this starting in
our example

Analysis of Linear Probing

• Trivial fact: For any λ < 1, linear probing will find an empty slot
– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
Average # of probes given λ (in the limit as TableSize→∞)
– Unsuccessful search:

– Successful search:

• This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

Spring 2010 24CSE332: Data Abstractions

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+ 21
11

2
1

λ

()⎟⎟⎠
⎞

⎜⎜
⎝

⎛
−

+
λ1

11
2
1

In a chart

• Linear-probing performance degrades rapidly as table gets full
– (Formula assumes “large table” but point remains)

• By comparison, chaining performance is linear in λ and has no
trouble with λ>1

Spring 2010 25CSE332: Data Abstractions

Quadratic probing

• We can avoid primary clustering by changing the probe function

• A common technique is quadratic probing:
– f(i) = i2
– So probe sequence is:

• 0th probe: h(key) % TableSize
• 1st probe: (h(key) + 1) % TableSize
• 2nd probe: (h(key) + 4) % TableSize
• 3rd probe: (h(key) + 9) % TableSize
• …
• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”

Spring 2010 26CSE332: Data Abstractions

Quadratic Probing Example

Spring 2010 27CSE332: Data Abstractions

0
1
2
3
4
5
6
7
8
9

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Spring 2010 28CSE332: Data Abstractions

0
1
2
3
4
5
6
7
8
9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Spring 2010 29CSE332: Data Abstractions

0
1
2
3
4
5
6
7
8 18
9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Spring 2010 30CSE332: Data Abstractions

0 49
1
2
3
4
5
6
7
8 18
9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Spring 2010 31CSE332: Data Abstractions

0 49
1
2 58
3
4
5
6
7
8 18
9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Spring 2010 32CSE332: Data Abstractions

0 49
1
2 58
3 79
4
5
6
7
8 18
9 89

TableSize=10
Insert:
89
18
49
58
79

Another Quadratic Probing Example

Spring 2010 33CSE332: Data Abstractions

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0
1
2
3
4
5
6

Another Quadratic Probing Example

Spring 2010 34CSE332: Data Abstractions

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0
1
2
3
4
5
6 76

Another Quadratic Probing Example

Spring 2010 35CSE332: Data Abstractions

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0
1
2
3
4
5 40
6 76

Another Quadratic Probing Example

Spring 2010 36CSE332: Data Abstractions

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48
1
2
3
4
5 40
6 76

Another Quadratic Probing Example

Spring 2010 37CSE332: Data Abstractions

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48
1
2 5
3
4
5 40
6 76

Another Quadratic Probing Example

Spring 2010 38CSE332: Data Abstractions

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48
1
2 5
3 55
4
5 40
6 76

Another Quadratic Probing Example

Spring 2010 39CSE332: Data Abstractions

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48
1
2 5
3 55
4
5 40
6 76

Uh-oh: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6
• Excel shows takes “at least” 50 probes and a pattern
• Proof uses induction and (n2+5) % 7 = ((n-7)2+5) % 7

• In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k

From bad news to good news

• The bad news is: After TableSize quadratic probes, we will just
cycle through the same indices

• The good news:
– Assertion #1: If T = TableSize is prime and λ < ½, then

quadratic probing will find an empty slot in at most T/2 probes

– Assertion #2: For prime T and 0 ≤ i,j ≤ T/2 where i ≠ j,
(h(key) + i2) % T ≠ (h(key) + j2) % T

– Assertion #3: Assertion #2 is the “key fact” for proving
Assertion #1

• So: If you keep λ < ½, no need to detect cycles

Spring 2010 40CSE332: Data Abstractions

Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: no
problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index
– Called secondary clustering

• Can avoid secondary clustering with a probe function that
depends on the key: double hashing…

Spring 2010 41CSE332: Data Abstractions

Double hashing

Idea:
– Given two good hash functions h and g, it is very unlikely

that for some key, h(key) == g(key)
– So make the probe function f(i) = i*g(key)

Probe sequence:
• 0th probe: h(key) % TableSize
• 1st probe: (h(key) + g(key)) % TableSize
• 2nd probe: (h(key) + 2*g(key)) % TableSize
• 3rd probe: (h(key) + 3*g(key)) % TableSize
• …
• ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) can’t be 0
Spring 2010 42CSE332: Data Abstractions

Double-hashing analysis

• Intuition: Since each probe is “jumping” by g(key) each time,
we “leave the neighborhood” and “go different places from other
initial collisions”

• But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)
– It is known that this cannot happen in at least one case:

• h(key) = key % p
• g(key) = q – (key % q)
• 2 < q < p
• p and q are prime

Spring 2010 43CSE332: Data Abstractions

More double-hashing facts

• Assume “uniform hashing”
– Means probability of g(key1) % p == g(key2) % p is
1/p

• Non-trivial facts we won’t prove:
Average # of probes given λ (in the limit as TableSize→∞)
– Unsuccessful search (intuitive):

– Successful search (less intuitive):

• Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad

Spring 2010 44CSE332: Data Abstractions

1
1 λ−

1 1log
1eλ λ
⎛ ⎞
⎜ ⎟−⎝ ⎠

Charts

Spring 2010 45CSE332: Data Abstractions

Where are we?

• Chaining is easy
– insert, find, delete proportion to load factor on average

• Open addressing uses probe functions, has clustering issues as
table gets full
– Why use it:

• Less memory allocation?
• Easier data representation?

• Now:
– Growing the table when it gets too full
– Relation between hashing/comparing and connection to Java

Spring 2010 46CSE332: Data Abstractions

Rehashing

• Like with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything over

• Especially with chaining, we get to decide what “too full” means
– Keep load factor reasonable (e.g., < 1)?
– Consider average or max size of non-empty chains?
– For open addressing, half-full is a good rule of thumb

• New table size
– Twice-as-big is a good idea, except, uhm, that won’t be prime!
– So go about twice-as-big
– Can have a list of prime numbers in your code since you won’t

grow more than 20-30 times

Spring 2010 47CSE332: Data Abstractions

More on rehashing

• We double the size (rather than “add 1000”) to get good
amortized guarantees (still promising to prove that later ☺)

• But one resize is an O(n) operation, involving n calls to the hash
function (1 for each insert in the new table)

• Space/time tradeoff: Could store h(key) with each data item,
but since rehashing is rare, this is probably a poor use of space
– And growing the table is still O(n)

Spring 2010 48CSE332: Data Abstractions

Hashing and comparing

• Haven’t emphasized enough for a find or a delete of an item of
type E, we hash E, but then as we go through the chain or keep
probing, we have to compare each item we see to E.

• So a hash table needs a hash function and a comparator
– In Project 2, you’ll use two function objects
– The Java standard library uses a more OO approach where

each object has an equals method and a hashCode
method:

Spring 2010 49CSE332: Data Abstractions

class Object {
boolean equals(Object o) {…}
int hashCode() {…}
…

}

Equal objects must hash the same

• The Java library (and your project hash table) make a very
important assumption that clients must satisfy…

• OO way of saying it:
If a.equals(b), then we must require
a.hashCode()==b.hashCode()

• Function object way of saying i:
If c.compare(a,b) == 0, then we must require
h.hash(a) == h.hash(b)

• Why is this essential?

Spring 2010 50CSE332: Data Abstractions

Java bottom line
• Lots of Java libraries use hash tables, perhaps without your

knowledge

• So: If you ever override equals, you need to override
hashCode also in a consistent way
– See CoreJava book, Chapter 5 for other “gotchas” with
equals

Spring 2010 51CSE332: Data Abstractions

Bad Example

Spring 2010 52CSE332: Data Abstractions

class PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle(double theta2) { theta+=theta2; }
…
boolean equals(Object otherObject) {

if(this==otherObject) return true;
if(otherObject==null) return false;
if(getClass()!=other.getClass()) return false;
PolarPoint other = (PolarPoint)otherObject;
double angleDiff =

(theta – other.theta) % (2*Math.PI);
double rDiff = r – other.r;
return Math.abs(angleDiff) < 0.0001

&& Math.abs(rDiff) < 0.0001;
}
// wrong: must override hashCode!

}

• Think about using a hash table holding points

By the way: comparison has rules too

We didn’t emphasize some important “rules” about comparison
functions for:
– all our dictionaries
– sorting (next major topic)

In short, comparison must impose a consistent, total ordering:
For all a, b, and c,

– If compare(a,b) < 0, then compare(b,a) > 0
– If compare(a,b) == 0, then compare(b,a) == 0
– If compare(a,b) < 0 and compare(b,c) < 0,

then compare(a,c) < 0

Spring 2010 53CSE332: Data Abstractions

Final word on hashing

• The hash table is one of the most important data structures
– Supports only find, insert, and delete efficiently

• Important to use a good hash function

• Important to keep hash table at a good size

• Side-comment: hash functions have uses beyond hash tables
– Examples: Cryptography, check-sums

Spring 2010 54CSE332: Data Abstractions

