CSE 331
Reasoning about ADTs

James Wilcox and Kevin Zatloukal

Motivation, part 1

 Hard to be sure ADT implementation is correct

/[**

* Adds a new integer to the front of the list

* @param n the integer to add

* @returns n :: ObJ (2) // AF: Obj = rev(this.list)

*/ // RI: this.size = this.list.length
public IntStack push(int n);

public IntStack push(int n) {
int newSize = this.size + 1;

int[] newList = new int[newSize];

for (int i = 0; i < this.size; i++) {
newList[i] = this.list[i];

}

newlList [newSize-1] = n;

return new IntStackImpl(newList, newSize);

 Would be nice to have tools for this!

Motivation, part 2

e Typical CSE 331 final is about an ADT:

— write part of the specification
— test parts of the implementation

— prove parts of the implementation correct
plus some things we'll see later...

* This topic gets us through the core material

Clients of ADTs

Reasoning about Function Calls

* Not too difficult if the function is...
1. defined for all inputs
2. defined imperatively
3. no arguments are mutated

* Plan for today:
1. simple case with none of the problems above
2. allow some undefined inputs
3. ADTs
4. declarative specifications

* We will not consider argument mutation this Topic

Reasoning about Function Calls

* For the simplest case only...

* Forward reasoning rule is

{P}} // Rparam x
l x = Math.sin(a); // Qreturn sin (x)
{{ P[x » x¢] and x = sin(a) }} double sin (double x)

 Backward reasoning rule is

X = Math.sin(a);

T { Q[x+ sin(a)] }}
{Qy

Reasoning about Function Calls

* Preconditions must be checked
— not valid to call the function on disallowed inputs

* Forward reasoning rule is

{P}}
l x = Math.log(a) Must also check a > 0
{{ P[x » x¢] and x =log(a) }}

: : // @param x with x > 0
* Backward reasoningruleis ,; greturn log(x)

double 1og(double x)

x = Math.log(a);

I {{ Q[x+ log(a)]and a > 0 }}
{Q}

Reasoning about Function Calls

* Applies to functions we define with imperative specs

// @param n a non-negative integer

// @Qreturns square(n), where

// square (0) := 0

// square (n+l) := square(n) + 2n + 1
public int square(int n) {..}

* Reasoning is the same. E.g., forward rule is

P
l i }i Must also check that n is non-negative
X = square (n);
{{ P[x = xo] and x = square(n) }}

Example 1: Forward

// @param x a positive number
// Qreturn sqrt(x + 2) + 1
public double f (double x) {

{{x=0}}

double r = x + 2;
{{ 1
r = Math.sqgrt(r);
{{ 1
r =r + 1;

{{ 1

T {{r=Vx+2+1}}

return r;

Example 1: Forward

// @param x a positive number
// Qreturn sqrt(x + 2) + 1
public double f (double x) {
{{x=0}}

double r = x + 2;
{x=0andr=x+2}}

r = Math.sqgrt(r);

U 1}
r=1r + 1;
U 1}

T {{r=Vx+2+1}}

return r;

Example 1: Forward

// @param x a positive number
// Qreturn sqrt(x + 2) + 1
public double f (double x) {

tx=03} inverting operation gives r* = x + 2
double r = x + 2;

{x=0andr=x+21}} cf.towhenr =, + 1 and P(r,)

r = Math.sqgrt(r);

{{x>0andr=+vx+2}} here we haver = /1, and 1, = x + 2
r=1r + 1; second fact is already solved for 1,
{ I3 so we can substitute right into left

instead of left into right
{r=+Vx+2+1}} g

return r;

Example 1: Forward

// @param x a positive number
// Qreturn sqrt(x + 2) + 1
public double f (double x) {

{{x=0}}
double r = x + 2;
{{x=0andr=x+2}} r =x+2
r = Math.sqrt (r); >0+ 2 sincex >0
{{x=>0andr=+vx+2}} =0
r =r + 1;
{{x=0andr=vx+2+1}} this looks good
T {r=vx+2+1}) what did we forget?

return r;

Example 2: Backward

// @param x a positive number
// Qreturn sqrt(x + 2) + 1
public double f (double x) {

{{x=0}}

R B
double r = x + 2;
{{ 1
r = Math.sqgrt(r);
{{ 1
r =r + 1;

{{r=vVx+2+1}}

return r;

Example 2: Backward

// @param x a positive number
// Qreturn sqrt(x + 2) + 1
public double f (double x) {

{{x=0}}

O B
double r = x + 2;
{{ I3

r = Math.sqgrt(r);

{{r+1=vVx+2+1}

r =r + 1;

{r=+Vx+2+1}}

return r;

Example 2: Backward

// @param x a positive number

// Qreturn sqrt(x + 2) + 1

public double f (double x) {
{{x=0}}

{{ I3
double r = x + 2;

({Jr+1=vx+2 +1landr>0}

r = Math.sqgrt(r);

{r+1=vVx+2 +1}

r =r + 1;

{r=vx+2+1}}

return r;

Example 2: Backward

// @param x a positive number

// Qreturn sqrt(x + 2) + 1

public double f (double x) {
{{x=0}}
{Vx+2+1=vVx+2+1andx+2>0}}
double r = x + 2;
{{vr+1=+vx+2+1landr=>0}}

r = Math.sqgrt(r);
{{r+1=vVx+2+1}}

r=1r + 1;

Ur=vx+2+1}}

return r;

:| check this implication

x>0 impliesx+2=>0

Reasoning about ADT Calls

 ADT methods are calls involving abstract states

* Forward reasoning rule is // @return x :: obj
FastList cons (int x)
l {P}
L = L.cons (x);
{{P[L>LgJand L=x:Ly}} L is a mathematical list

 Backward reasoning rule is

L = L.cons (x);

I { QL x: L] }}
{Q}}

Reasoning about ADT Calls

* Very little changes with mutators...

* Forward reasoning rule is

|

 Backward reasoning rule is

T

{P}

L.cons (x);
{{P[L-Lo]and L=x:: L }}

{Q[Lmx:L]}}

L.cons (x);

{Q}}

// @modifies obj
// RQeffects obj = x :: obj,
void cons (int x)

RQeffects says it is an assignment
so we get an identical result

Example Calls with Declarative Specs

// Qreturns x such that x >> a and x >= Db
public int max(int a, int b) {..}

* Forward reasoning rule is

{P}}
l X = max(a, b);

{{P[x—x¢]andx = aand x> b }}

 Backward reasoning rule is

x = max(a, b); Must check that x> aandx>Db
{{fa>0and2x>a+b}} implies 2x>a+b

T {{a>0}}

Function Calls with Declarative Specs

// Qrequires P,

-- preconditions a, b

// @returns x such that R -- conditions on a, b, x

public int f (int a, int b)

* Forward reasoning rule is

{P}
l X = f(a/ b);
{{P[xmx0] and R }}

 Backward reasoning rule is

{{Qiand P; }}
T X:f(a/ b);

{Qiand Q; }}

{..}

Must also check that P implies P,

Must also check that R implies Q,

Q, is the part of postcondition using “x”

Correct ADT Implementation

Recall: Documenting the FastList ADT

class FastlLastList implements FastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;
private List list;

* Representation Invariant (RI) holds info about this.last
— fields cannot have just any number and list of numbers
— they must fit together by satisfying RI

last must be the last number in the list stored

Correctness of FastList Constructor

class FastlLastList implements FastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;
private List list;

FastLastList (List L) {
this.list = L;
this.last = last(this.list);

 Constructor must ensure that Rl holds at end

— we can see that it does in this case
— since we don’t mutate, they will always be true

Correctness of FastList Constructor

class FastlLastList implements FastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;

private List list;

// Qeffects obj = L
FastLastList (List L) {
this.list = L;
this.last = last(this.list);

* Constructor must create the requested abstract state
— client wants obj to be the passed in list
— we can see that obj = this.list =L

Correctness of getLast

class FastlLastList implements FastList {
// RI: this.last = last(this.list)
// AF: obj = this.list

// @return last (obj)
public int getLast () {

return this.last;

b

 Use both Rl and AF to check correctness

last(obj) =

Correctness of getLast

class FastlLastList implements FastList {
// RI: this.last = last(this.list)
// AF: obj = this.list

// @return last (obj)
public int getLast () {

return this.last;

b

 Use both Rl and AF to check correctness

last(obj) = last(this.list) by AF
= this.last by RI

Correctness of Immutable ADTs

* Check that the constructor...
— creates a concrete state satisfying RI
— creates the abstract state required by the spec

* Check the correctness of each method...
— check value returned is the one stated by the spec
— will need to use Rl in most methods
— will need to use AF in every method

ADTs: the Good and the Bad

Provides data abstraction
— can change data structures without breaking clients

* Comes at a cost
— more work both to specify and to check correctness

* Not everything needs to be an ADT
— don’t be like Java and make everything a class

* Prefer concrete types for most things
— concrete types are easier to think about
— introduce ADTs when the first change occurs

Immutable Queues

Recall: Immutable Queue

* A queue is a list that can only be changed two ways:
— add elements to the front
— remove elements from the back

// List that only supports adding to the front and
// removing from the end

interface NumberQueue {

// @return len (obj)

int size () ;

// @Qreturn [x] ++ obj

NumberQueue enqueue (int x);

// @Qrequires len(obj) > 0
// @return (x, Q) with obj = Q ++ [x]

DequeueParts dequeue () ;

Implementing a Queue with a List

// Implements a queue with a list.

class ListQueue implements NumberQueue ({

// AF: obj = this.items
private List items;

* Easiest implementation is concrete = abstract state
— just store the abstract state in a field

» Still requires extra work to check correctness...
— abstraction barrier comes with a cost

Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue ({

// AF: obj = this.items
private List items;

// @Qreturns len (obj)
public int size () {
return len (this.items);

s
e Correctness of size:

len(this.items) =

Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue ({

// AF: obj = this.items
private List items;

// @Qreturns len (obj)
public int size () {
return len (this.items);

s
e Correctness of size:

len(this.items) = len(obj) by AF

Implementing a Queue with a List

// Implements a queue with a list.

class ListQueue implements NumberQueue ({

// AF: obj = this.items
private List items;

// Qeffects obj = items
ListQueue (List items) {

this.items = items;

e Correctness of constructor:

items

Implementing a Queue with a List

// Implements a queue with a list.

class ListQueue implements NumberQueue ({

// AF: obj = this.items
private List items;

// Qeffects obj = items
ListQueue (List items) {

this.items = items;

e Correctness of constructor:

items = this.items
= obj AF

Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue ({

// AF: obj = this.items
private List items;

// @Qreturns [x] ++ obj
public NumberQueue enqgqueue (int x) {
return new ListQueue (cons (x, this.items));

} 7
e Correctness of enqueue:

return value =

Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue ({

// AF: obj = this.items
private List items;

// @Qreturns [x] ++ obj
public NumberQueue enqgqueue (int x) {

return new ListQueue (cons (x, this.items));

s

e Correctness of enqueue:

return value = x:: this.items spec of constructor
= X :: 0bj AF
=[] # (x:: obj) def of concat

= [x] 4 obj def of concat

Summary of ListQueue

 Simplest possible implementation of ADT
— abstract state = concrete state of one field

 Reasoning about every method is more complex

— must apply AF to relate return value to spec’s postcondition
code uses fields, but postcondition uses “obj”

— this is the cost of the abstraction barrier

Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

// AF: obj = this.front ++ rev(this.back)

private List front;
private List back; // in reverse order

 Back part stored in reverse order
— head of front is the first element
— head of back is the last element

this.front = 1 2 nil obj = 1 2

. _ : : | I
this.back 4 3 nil nil | 4 |i

Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

// AF: obj = this.front ++ rev(this.back)
// RI: if this.back = nil, then this.front = nil

private List front;

private List back;

* If back is nil, then the queue is empty
— if back = nil, then front = nil (by RI) and thus

obj =

Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

// AF: obj = this.front ++ rev(this.back)
// RI: if this.back = nil, then this.front = nil

private List front;

private List back;

* If back is nil, then the queue is empty
— if back = nil, then front = nil (by RI) and thus

obj = nil # rev(nil) by AF
= rev(nil) def of concat
= nil def of rev

— if the queue is not empty, then back is not nil
(311 alert: this is the contrapositive)

Implementing a Queue with Two Lists

// Implements a queue using two lists.

class ListPairQueue implements NumberQueue {

// AF: obj = this.front ++ rev(this.back)
// RI: if this.back = nil, then this.front = nil
private List front;

private List back;

// makes obj = front ++ rev(back)
ListPairQueue (List front, List back) {

* Will implement this later...

Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)

private List front;
private List back;

// @Qreturns len (obj)
public int size () {
return len(this.front) + len(this.back);

e Correctness of size:

len(obj) =

Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)

private List front;
private List back;

// @Qreturns len (obj)
public int size () {
return len(this.front) + len(this.back);

e Correctness of size:

len(obj) = len(this.front # rev(this.back)) by AF
= len(this.front) + len(rev(this.back)) by Example 3
= len(this.front) + len(this.back) by another

induction

Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)

private List front;
private List back;

// @Qreturns [x] ++ obj
public NumberQueue enqgqueue (int x) {
return new ListPairQueue (cons(x, this.front), this.back)

* Correctness of enqueue:

ret value =

Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)

private List front;
private List back;

// @Qreturns [x] ++ obj

public NumberQueue enqgqueue (int x) {

return new ListPairQueue (cons (X%,

* Correctness of enqueue:

ret value = (x :: this.front) # rev(this.back)
= x :: (this.front # rev(this.back))
= X :: 0bj
=[] # (x:: obj)
= [x] # obj

this.front), this.back)

spec of constructor
def of concat

AF

def of concat

def of concat

Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)

private List front;
private List back;

// @Qrequires len(obj) > 0
// @Qreturns (x, Q) with obj = Q ++ [x]
public DequeueParts dequeue () {

return new DequeueParts (this.back.hd,
new ListPairQueue (this.front, this.back.tl));

b

— as noted previously, precondition means this.back # nil

— as we know, this means this.back =x:: L
where x = this.back.hd and some L = this.back.tl

Implementing a Queue with Two Lists

// @Qrequires len(obj) > 0
// @Qreturns (x, Q) with obj = Q ++ [x]
public DequeueParts dequeue () {

return new DequeueParts (this.back.hd,

new ListPairQueue (this.front, this.back.tl));

— this.back = x :: L, where x = this.back.hd and L = this.back.tl

obj =

= (this.front # rev(this.back.tl)) # [this.back.hd]

Implementing a Queue with Two Lists

// @Qrequires len(obj) > 0
// @Qreturns (x, Q) with obj = Q ++ [x]
public DequeueParts dequeue () {

return new DequeueParts (this.back.hd,

new ListPairQueue (this.front, this.back.tl));

— this.back = x :: L, where x = this.back.hd and L = this.back.tl

obj = this.front # rev(this.back) by AF
= this.front # rev(this.back.hd :: this.back.tl) since back =x:: L
= this.front # (rev(this.back.tl) # [this.back.hd]) def of rev
= (this.front # rev(this.back.tl)) # [this.back.hd]

Well-Known Facts About List Concatenation

 The List notes mention these facts
Identity L#nil=L

Associativity (L#R)#S=L# (R#S)

 We will use those going forward

Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil
private List front;

private List back;

// makes obj = front ++ rev(back)
ListPairQueue (List front, List back) {
if (back == null) {
this.front = null;
this.back = rev (front); holds since this.front = nil
} else {
this.front = front;
this.back = back;

holds since this.back # nil

* Need to check that Rl holds at end of constructor

Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil
private List front;

private List back;

// makes obj = front ++ rev(back)
ListPairQueue (List front, List back) {
if (back == null) {
this.front = null;
this.back = rev(front); obj = nil # rev(rev(front)) ??
} else {
this.front = front;

_ obj = front # rev(back)
this.back = back;

e Need to check this creates correct abstract state

Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)

// RI: if this.back = nil, then this.front = nil
private List front;

private List back;

ListPairQueue (List front, List back) {
if (back == null) {
this.front = null;
this.back = rev(front);

} else {
}
}
obj = nil # rev(rev(front)) AF
= nil # front because | said so
= front def of concat
= front # nil
= front # rev(nil) def of rev

= front # rev(back) since back = nil

Correct ADT Implementation
(Mutable Case)

Mutable ADTs

* Previously:
— state was immutable

— set in the constructor and then never changed
only need to confirm RI holds at the end of the constructor
if Rl holds there, then it holds forever

* Now:
— allow state to be changed by methods

Correctness of Mutable ADTs

* Check that the constructor...
— creates a concrete state satisfying RI
— creates the abstract state required by the spec

* Check the correctness of each observer method...
— check value returned is the one stated by the spec

 Check the correctness of each mutator method...

— check abstract state produced is one stated by the spec
— check that the RI still holds

— make sure there are no aliases

Recall: Mutable Version of Fast List ADT

// Represents a mutable list of numbers.
interface MutableFastlList {

// @Qreturn last (obj)
int getLast () ;

// Q@return obj
List getList();

// @modifies obj
// RQeffects obj = x :: obj 0

void cons (int x);

mutator method

Recall: One Concrete Rep for FastList

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;
private List list;

// makes obj = list
MutableFastListImpl (List 1list) {
this.list = list;
this.last = last(this.list);

 We can use the same rep for a mutable version

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;

private List list;

// @modifies obj

// Reffects obj = x :: obj_0

public void cons (int x) {
this.list = cons(x, this.list);

s

e Let’s check correctness...

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;

private List list;

// @modifies obj

// Reffects obj = x :: obj_0

public void cons (int x) {
this.list = cons(x, this.list);
{{ this.list = x :: this.list, }}

t {{ Post: obj =x:: objy }}

I

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;

private List list;

// @modifies obj
// QGeffects obj = x :: obj 0
public void cons (int x) {
this.list = cons(x, this.list); What is missing?
{{ this.list = x :: this.list }}
t {{ Post: obj =x:: objy }}
I

obj = this.list by AF
= X :: this.listy since this.list = x :: this.list,

= X :: 0bjy by AF

Also, need the RI to hold!

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;

private List list;

// @modifies obj

// Reffects obj = x :: obj_0

public void cons (int x) {
this.list = cons(x, this.list);
{{ this.list = x :: this.list, }}

t {{ Post: obj =x:: obj, and

this.last = last(this.list) }} Does it? No!

Also, need the RI to hold!

s

 Postcondition is @returns, Geffects, and RI

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;
private List list;

// @modifies obj
// Reffects obj = x :: obj_0
public void cons (int x) {
this.list = cons(x, this.list);
this.last = last(this.list);
¥ {{ this.list = x :: this.listy and this.last = last(this.list) }}
t {{Post: obj = x :: objy and this.last = last(this.list) }}

s

Rep Invariant now holds

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;

private List list;

// @modifies obj
// Reffects obj = x :: obj_0
public void cons (int x) {
this.last = last(this.list);
{{ this.last = last(this.list) }}
this.list = cons(x, this.list);
v {{ this.list = x :: this.listy and this.last = last(this.listy) }}
4+ {{ Post: obj = x :: objj and this.last = last(this.list) }}

s

Rep Invariant would not hold if we switched the order

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;
private List list;

// @modifies obj
// Reffects obj = x :: obj_0
public void cons (int x) {
this.list = cons(x, this.list);
this.last = last(this.list);
¥ {{ this.list = x :: this.listy and this.last = last(this.list) }}
t {{Post: obj = x :: objy and this.last = last(this.list) }}

s

This version is obviously correct, but O(n).

Can we do it faster?

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
// RI: this.last = last(this.list)
// AF: obj = this.list
private int last;

private List list;

// @modifies obj

// Reffects obj = x :: obj_0
public void cons (int x) {

if (this.list == null)
this.last = x;

this.list = cons(x, this.list);

IR 1

{{ Post: obj = x :: obj, and this.last = last(this.list) }}

s

O(1) version, but more complex reasoning (two branches)

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {

public void cons (int x) {

if (this.list == null)

this.last = x;

this.list = cons(x, this.list);

v {{ this.list = x :: this.listy and this.listy = nil and this.last = x }}
{{ Post: obj = x :: obj, and this.last = last(this.list) }}

I
Case “then”:
last(this.list) = last(x :: this.listy) since this.list = x :: this.list,
= last(x :: nil) since this.listy = nil
=X def of last
= this.last since x = this.last
last(x :: nil) = X

last(x::y:: L) = last(y:: L)

Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {

public void cons (int x) {
if (this.list == null)
this.last = x; from the RI
this.list = cons(x, this.list);
v {{ this.list = x :: this.listy and this.listy # nil and
this.last = this.lasty and this.lasty = last(this.listy) }}
{{ Post: obj = x :: obj, and this.last = last(this.list) }}

Case “else”:
last(this.list) = last(x :: this.listy) since this.list = x :: this.list,
= last(this.listy) def of last (since this.listy # nil)
= this.last, since this.lasty, = last(this.listy)
= this.last since this.last = this.last,
last(x :: nil) = X

last(x::y:: L) = last(y:: L)

Defensive Programming

Defensive Programming

* We try to catch all bugs via
1. Type checking
2. Reasoning
3. Testing

* But some will get through...

* Add extra checks to catch them
— reduces the work of debugging
— we call this "defensive programming"

Defensive Programming

1. Add checks for invalid inputs

— clients should not pass them
they violate the precondition

— given enough clients, some will pass invalid inputs

* EJ 49: check parameters for validity

 Check these if's not too expensive
— would only skip if it would cause asymptotic slowdown
— e.g., binary search cannot check the array is sorted

Defensive Programming

2. Check that the RI holds at the end of mutators

— mutation could produce an invalid state

— would cause painful debugging
code doesn't crash then

failure doesn't occur until the next method call (or later)

— we call this method "checkRep" in 331

* Worth checking even if it is expensive
— add a flag to enable them when testing

Defensive Programming

3. Check that the RI holds at the start of mutators
— wait, why?
— that's not even possible... is it?

* Can happen with rep exposure
— mutation through an alias that breaks the RI

— could be worse
they could mutate it in a way that doesn't break the R
it's likely still a bug because the abstract state was wrongly changed

Using Mutable ADTs

Recall: Mutable Version of Fast List ADT

// Represents a mutable list of numbers.
interface MutableFastlList {

// @Qreturn last (obj)
int getLast () ;

// @returns first(obj), where
// first(nil) =0

// first(x :: L) := x

int getFirst () ;

// Q@return obj
List getList();

// @modifies obj
// RQeffects obj = x :: obj 0

void cons (int x);

Using the Mutable List ADT

// Qrequires L !'= nil

// @modifies R

// @Geffects R = (m+k) :: .. :: (m+l) :: RO,

// where m = first (L)

void g (MutableFastList L, MutableFastList R, int k) {
int 1 = 1;
// Inv: R= (m+i-1) :: .. :: (m+l) :: RO

while (1 <= k) {
int m = L.getFirst();
R.cons(m + 1);
i++;

s

Using the Mutable List ADT

// @requires L '= nil
// @modifies R
// RGeffects R = (m+k) :: .. :: (m+l) :: RO,
// where m = first (L)
void g (MutableFastList L, MutableFastList R, int k) {
int 1 = 1;
// Inv: R= (m+i-1) :: .. :: (mtl) :: RO
while (1 <= k) {
{{R=((m+i-1) :: ...:: (m+1) =Ry }}
int m = L.getFirst();
R.cons(m + 1);
i++;
{{R=((m+i-1) :: ...:: (m+1) =Ry }}

Using the Mutable List ADT

// @requires L '= nil
// @modifies R
// RGeffects R = (m+k) :: .. :: (m+l) :: RO,
// where m = first (L)
void g (MutableFastList L, MutableFastList R, int k) {
int 1 = 1;
// Inv: R= (m+i-1) :: .. :: (mtl) :: RO
while (1 <= k) {
{{R=((m+i-1) :: ...:: (m+1) =Ry }}
int m = L.getFirst();
{{R=((m+i-1) :: ...:: (m+1) :: Ry and m = first(L) }}
R.cons(m + 1);
i++;
{{R=((m+i-1) :: ...:: (m+1) =Ry }}

Using the Mutable List ADT

// @requires L '= nil
// Q@modifies R

// @Geffects R = (m+k) :: .. :: (m+l) :: RO,

// where m = first (L)

void g (MutableFastList L, MutableFastList R, int k) {
int 1 = 1;
// Inv: R= (m+i-1) :: .. :: (m+l) :: RO

while (i <= k) {
int m = L.getFirst();

{{R=((m+i-1) :: ...:: (m+1) :: Ry and m = first(L) }}

R.cons(m + 1);

{{R=(m+i) :: R;and R; = (m+i-1) :: ...:: (m+1) :: Ry and m = first(L) }}
i++;

{{R=((m+i-1) :: ...:: (m+1) =Ry }}

Using the Mutable List ADT

// @requires L '= nil
// Q@modifies R

// @Geffects R = (m+k) :: .. :: (m+l) :: RO,

// where m = first (L)

void g (MutableFastList L, MutableFastList R, int k) {
int 1 = 1;
// Inv: R= (m+i-1) :: .. :: (m+l) :: RO

while (i <= k) {
int m = L.getFirst();

R.cons(m + 1i);

{{R=(m+i) :: Ry and R; = (m+i-1) :: ...:: (m+1) :: Ry and m = first(L) }}
{{R=((m+i)::...:: (m+1) =Ry }}
i++;

{{R=((m+i-1) :: ...:: (m+1) =Ry }}

Using the Mutable List ADT

// @requires L '= nil
// @modifies R
// @Geffects R = (m+k) :: .. :: (m+l) :: RO,

// where m = first (L)
void g (MutableFastList L, MutableFastList R, int k) {
int 1 = 1;
// Inv: R= (m+i-1) :: .. :: (mtl) :: RO
while (i <= k) {
int m = L.getFirst();

R.cons(m + 1i);

{{R=(m+i) :: Ry and Ry = (m+i-1) :: ... :: (m+1) :: Ry and m = first(L) }}
{{R=((m+i)::...:: (m+1) =Ry }}
i1++;

) R = (m+i) : Ry

}s - (m+i) T (m+i'1) RTINS (m+1) :: Ry since R;{ = ...

Using the Mutable List ADT

void g (MutableFastList L, MutableFastList R, int k)

* We have proven this code correct, but...

“Beware of bugs in the above code;
| have only proved it correct, not tried it.”

Donald Knuth, 1977

* We should also try it...

Using the Mutable List ADT

// @Geffects R = (m+k) :: .. :: (m+l) :: RO,
// where m = first (L)
void g (MutableFastList L, MutableFastList R, int k)

* Try out the code:

. // L=2 ::1

. // R=2 ::1

g(L, R, 3)
System.out.println (R);

 What list should this print?

5:4:3::2:1::nil

Using the Mutable List ADT

// @Geffects R = (m+k) :: .. :: (m+l) :: RO,
// where m = first (L)
void g (MutableFastList L, MutableFastList R, int k)

* Try out the code:

. // L=2 ::1

. // R=2 ::1

g(L, R, 3)
System.out.println (R);

* Instead, it prints 8::5::3::2::1::nil! How?!?

L and R are aliases to the same MutableFastList

Reasoning with Aliases

* Aliasing breaks reasoning!
— there was nothing wrong with our math

— our math did not correctly describe the program
modeling programs with aliasing is basically impossible

Another Mutable Queue ADT

 Another mutable version with different methods

// Mutable array that only supports adding to the front
// and removing from the end.
interface MutableNumberQueue {

// @Qreturns obj
List<Integer> elements{();

// @Gmodifies obj
// Qeffects obj = [x] ++ obj_0

void enqueue (int x);

// Qrequires len(obj) > 0

// @Gmodifies obj

// RQeffects obj 0 = obj ++ [x]
// Qreturns x

int dequeue() ;

Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

// AF: obj = rev(this.front) ++ this.back
private Arraylist<Integer> front;
private ArraylList<Integer> back;

// Qeffects obj = vals

ArrayPairQueue (ArrayList<Integer> vals) {
this.front = new ArrayList<>();
this.back = vals; We should check this...

Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

A

// AF: obj = rev(this.front) ++ this.back
private Arraylist<Integer> front;
private ArraylList<Integer> back;

// Qeffects obj = vals

ArrayPairQueue (ArrayList<Integer> vals) {
this.front = new ArrayList<>();
this.back = vals;
{{ this.front = [] and this.back = vals }}

{{ Post: obj = vals }}

Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

// AF: obj = rev(this.front) ++ this.back
private Arraylist<Integer> front;
private ArraylList<Integer> back;

// RQeffects obj = vals
ArrayPairQueue (ArrayList<Integer> vals) {

this.front = new ArrayList<>();

this.back = vals; Is this really correct?
v {{ this.front = [] and this.back = vals }} No way to know for sure
t | {{ Post: obj = vals }} at the next method call!
obj = rev(this.front) # this.back by AF

=rev([]) # this.back since this.front = []

=[] # this.back def of rev

= this.back = vals since this.back = vals

Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

// AF: obj = rev(this.front) ++ this.back
private Arraylist<Integer> front;
private ArraylList<Integer> back;

// Reffects obj = vals

ArrayPairQueue (ArrayList<Integer> vals) {
this.front = new ArrayList<>();
this.back = new ArrayList<>(vals);

 Must make a copy of the array!
— then, we have the only reference to it (no aliases)

Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

// AF: obj = rev(this.front) ++ this.back
private Arraylist<Integer> front;
private ArraylList<Integer> back;

// @Qreturns obj

public List<Integer> elements () {
ArrayList<Integer> result = new ArrayList<>();
result.addAll (this.front);
Collections.reverse (result) ;
result.addAll (this.back);
return result; This is O(n)...

I We can optimize it if front = [].

rev([]) # this.back = [] # this.back = this.back

Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

// AF: obj = rev(this.front) ++ this.back
private Arraylist<Integer> front;
private ArraylList<Integer> back;

// @returns obj Is this correct?

public List<Integer> elements () { No way to say!
if (this.front.size() == 0) {
return this.back; // O(1l) when this.front = []
} else {

ArrayList<Integer> result = new ArrayList<>();
result.addAll (this.front);

Collections.reverse (result);

result.addAll (this.back);

return result;

b

Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.

class ArrayPairQueue implements MutableNumberQueue {

// AF: obj = rev(this.front) ++ this.back
private ArraylList<Integer> front;

private ArraylList<Integer> back;

// @Qreturns obj

public List<Integer> elements () {
ArrayList<Integer> result = new ArrayList<>();
result.addAll (this.front);
Collections.reverse (result) ;
result.addAll (this.back);
return result;

s

 Cannot return an alias to this.back
— must make a copy in all cases

Moral of the Story for Mutable Heap State

 More mutation gave us better efficiency

— saved memory
— immutable version could be just as fast

* More mutation means more complex reasoning
— more facts to keep track of
— more ways to make mistakes
— more work to make sure we did it right

* New possibilities for exciting bugs!

— must avoid aliasing of anything mutable
this is “representation exposure”

Need for Mutable Heap State

 Saw that aliased mutable heap state is complex
— avoid mixing aliasing and mutation

* Use coding conventions depending on context
1. server-side data storage - mutation without aliasing
2. client-side Ul — aliasing without mutation

* In other cases, may need other conventions
— two phase builder pattern

