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Motivation, part 1

• Hard to be sure ADT implementation is correct

• Would be nice to have tools for this!



Motivation, part 2

• Typical CSE 331 final is about an ADT:
– write part of the specification
– test parts of the implementation
– prove parts of the implementation correct

plus some things we'll see later…

• This topic gets us through the core material



Clients of ADTs



Reasoning about Function Calls

• Not too difficult if the function is…
1. defined for all inputs
2. defined imperatively
3. no arguments are mutated

• Plan for today:
1. simple case with none of the problems above
2. allow some undefined inputs
3. ADTs
4. declarative specifications

• We will not consider argument mutation this Topic



Reasoning about Function Calls

• For the simplest case only…

• Forward reasoning rule is

{{	P	}}
				x = Math.sin(a);
{{	P[x	↦	x0]	and	x	=	sin(a)	}}

• Backward reasoning rule is

{{	Q[x	↦	sin(a)]		}}
				x = Math.sin(a);
{{	Q	}}

// @param x
// @return sin(x)
double sin(double x)



Reasoning about Function Calls

• Preconditions must be checked
– not valid to call the function on disallowed inputs

• Forward reasoning rule is

{{	P	}}
				x = Math.log(a);
{{	P[x	↦	x0]	and	x	=	log(a)	}}

• Backward reasoning rule is

{{	Q[x	↦	log(a)]	and	a	>	0	}}
				x = Math.log(a);
{{	Q	}}

Must also check a	>	0

// @param x with x > 0
// @return log(x)
double log(double x)



Reasoning about Function Calls

• Applies to functions we define with imperative specs

// @param n a non-negative integer 
// @returns square(n), where
//       square(0) := 0
//     square(n+1) := square(n) + 2n + 1
public int square(int n) {..}

• Reasoning is the same. E.g., forward rule is

{{	P	}}
				x = square(n);
{{	P[x	↦	x0]	and	x	=	square(n)	}}

Must also check that n	is non-negative



Example 1: Forward

// @param x a positive number
// @return sqrt(x + 2) + 1 
public double f(double x) {
 {{	x	≥	0	}}
 double r = x + 2;
	 {{	_______________________	}}
 r = Math.sqrt(r);
 {{	_______________________	}}
 r = r + 1;
 {{	_______________________	}}
 {{	r	=	 𝑥 + 2	+	1	}}
 return r;
}



Example 1: Forward

// @param x a positive number
// @return sqrt(x + 2) + 1 
public double f(double x) {
 {{	x	≥	0	}}
 double r = x + 2;
	 {{	x	≥	0	and	r	=	x	+	2	}}
 r = Math.sqrt(r);
 {{	_______________________	}}
 r = r + 1;
 {{	_______________________	}}
 {{	r	=	 𝑥 + 2	+	1	}}
 return r;
}



Example 1: Forward

// @param x a positive number
// @return sqrt(x + 2) + 1 
public double f(double x) {
 {{	x	≥	0	}}
 double r = x + 2;
	 {{	x	≥	0	and	r	=	x	+	2	}}
 r = Math.sqrt(r);

 {{	x	≥	0	and	r	=	 x + 2	}}
 r = r + 1;

 {{	_______________________	}}
 {{	r	=	 x + 2	+	1	}}
 return r;
}

here we have r = 𝑟! and 𝑟! = 𝑥 + 2

c.f. to when r = 𝑟! + 1 and P(𝑟!)

inverting operation gives 𝑟" = 𝑥 + 2

second fact is already solved for 𝑟!
so we can substitute right into left
instead of left into right



Example 1: Forward

// @param x a positive number
// @return sqrt(x + 2) + 1 
public double f(double x) {
 {{	x	≥	0	}}
 double r = x + 2;
	 {{	x	≥	0	and	r	=	x	+	2	}}
 r = Math.sqrt(r);

 {{	x	≥	0	and	r	=	 x + 2	}}
 r = r + 1;

 {{	x	≥	0	and	r	=	 x + 2	+	1	}}
 {{	r	=	 x + 2	+	1	}}
 return r;
}

this looks good

r	 =	x	+	2
	 ≥	0	+	2	 	 	 since x	≥ 0
	 ≥	0

what did we forget?



Example 2: Backward

// @param x a positive number
// @return sqrt(x + 2) + 1 
public double f(double x) {
 {{	x	≥	0	}}
	 {{	_______________________	}}
 double r = x + 2;
	 {{	_______________________	}}
 r = Math.sqrt(r);

 {{	_______________________	}}
 r = r + 1;

 {{	r	=	 x + 2	+	1	}}
 return r;
}



Example 2: Backward

// @param x a positive number
// @return sqrt(x + 2) + 1 
public double f(double x) {
 {{	x	≥	0	}}
	 {{	_______________________	}}
 double r = x + 2;
	 {{	_______________________	}}
 r = Math.sqrt(r);

 {{	r	+	1	=	 x + 2	+	1	}}
 r = r + 1;

 {{	r	=	 x + 2	+	1	}}
 return r;
}



Example 2: Backward

// @param x a positive number
// @return sqrt(x + 2) + 1 
public double f(double x) {
 {{	x	≥	0	}}
	 {{	_______________________	}}
 double r = x + 2;

	 {{ r	+	1	=	 x + 2	 +	1	and	r	≥	0	}}
 r = Math.sqrt(r);

 {{	r	+	1	=	 x + 2	 +	1	}}
 r = r + 1;

 {{	r	=	 x + 2	+	1	}}
 return r;

}



Example 2: Backward

// @param x a positive number
// @return sqrt(x + 2) + 1 
public double f(double x) {
 {{	x	≥	0	}}
	 {{ x + 2	+	1	=	 x + 2 + 1	and	x	+	2	≥	0	}}
 double r = x + 2;

	 {{ r	+	1	=	 x + 2	+	1	and	r	≥	0	}}
 r = Math.sqrt(r);

 {{	r	+	1	=	 x + 2	+	1	}}
 r = r + 1;

 {{	r	=	 x + 2	+	1	}}
 return r;

}

check this implication

x	≥	0	implies x	+	2	≥	0



Reasoning about ADT Calls

• ADT methods are calls involving abstract states

• Forward reasoning rule is

{{	P	}}
				L = L.cons(x);
{{	P[L	↦	L0]	and	L	=	x	::	L0	}}

• Backward reasoning rule is

{{	Q[L	↦	x	::	L]	}}
				L = L.cons(x);
{{	Q	}}

// @return x :: obj
FastList cons(int x)

L is a mathematical list



Reasoning about ADT Calls

• Very little changes with mutators…

• Forward reasoning rule is

{{	P	}}
				L.cons(x);
{{	P[L	↦	L0]	and	L	=	x	::	L0	}}

• Backward reasoning rule is

{{	Q[L	↦	x	::	L]	}}
				L.cons(x);
{{	Q	}}

// @modifies obj
// @effects obj = x :: obj0
void cons(int x)

@effects says it is an assignment
so we get an identical result



Example Calls with Declarative Specs

// @returns x such that x >= a and x >= b
public int max(int a, int b) {..}

• Forward reasoning rule is

{{	P	}}
				x = max(a, b);
{{	P[x	↦	x0]	and	x	≥	a	and	x	≥	b	}}

• Backward reasoning rule is

{{	a	>	0	}}
				x = max(a, b);
{{	a	>	0	and	2x	≥	a	+	b	}}

Must check that x	≥	a	and	x	≥	b 
implies 2x	≥	a	+	b



Function Calls with Declarative Specs

// @requires P2           -- preconditions a, b
// @returns x such that R -- conditions on a, b, x
public int f(int a, int b) {..}

• Forward reasoning rule is

{{	P	}}
				x = f(a, b);
{{	P[x	↦	x0]	and	R	}}

• Backward reasoning rule is

{{	Q1	and	P2	}}
				x = f(a, b);
{{	Q1	and	Q2	}}

Must also check that P implies P2

Must also check that R implies Q2

Q2 is the part of postcondition using “x”



Correct ADT Implementation



Recall: Documenting the FastList ADT

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;
  …

}

• Representation Invariant (RI) holds info about this.last
– fields cannot have just any number and list of numbers
– they must fit together by satisfying RI

last must be the last number in the list stored



Correctness of FastList Constructor

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  FastLastList(List L) {

    this.list = L;
    this.last = last(this.list);
  }

  …

• Constructor must ensure that RI holds at end
– we can see that it does in this case
– since we don’t mutate, they will always be true



Correctness of FastList Constructor

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @effects obj = L
  FastLastList(List L) {

    this.list = L;
    this.last = last(this.list);
  }

• Constructor must create the requested abstract state
– client wants obj to be the passed in list
– we can see that obj	=	this.list	=	L



Correctness of getLast

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  …

  // @return last(obj)
  public int getLast() {
    return this.last;
  };
}

• Use both RI and AF to check correctness

last(obj)	=
	 	



Correctness of getLast

class FastLastList implements FastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  …

  // @return last(obj)
  public int getLast() {
    return this.last;
  };
}

• Use both RI and AF to check correctness

last(obj)		 =	last(this.list)	 	 	 	 by AF
	 	 	 =	this.last	 	 	 	 	 by RI



Correctness of Immutable ADTs

• Check that the constructor…
– creates a concrete state satisfying RI
– creates the abstract state required by the spec

• Check the correctness of each method…
– check value returned is the one stated by the spec
– will need to use RI in most methods
– will need to use AF in every method



ADTs: the Good and the Bad

• Provides data abstraction
– can change data structures without breaking clients

• Comes at a cost
– more work both to specify and to check correctness

• Not everything needs to be an ADT
– don’t be like Java and make everything a class

• Prefer concrete types for most things
– concrete types are easier to think about
– introduce ADTs when the first change occurs



Immutable Queues



Recall: Immutable Queue

• A queue is a list that can only be changed two ways:
– add elements to the front
– remove elements from the back

// List that only supports adding to the front and
// removing from the end
interface NumberQueue {

  // @return len(obj)
  int size();

  // @return [x] ++ obj
  NumberQueue enqueue(int x);

  // @requires len(obj) > 0
  // @return (x, Q) with obj = Q ++ [x]
  DequeueParts dequeue();

}



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {

  // AF: obj = this.items
  private List items;

• Easiest implementation is concrete = abstract state
– just store the abstract state in a field

• Still requires extra work to check correctness…
– abstraction barrier comes with a cost



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {

  // AF: obj = this.items
  private List items;

  // @returns len(obj)
  public int size() {
    return len(this.items);
  };

• Correctness of size:

	 len(this.items)	=



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {

  // AF: obj = this.items
  private List items;

  // @returns len(obj)
  public int size() {
    return len(this.items);
  };

• Correctness of size:

	 len(this.items)	=	len(obj)	    by AF



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {

  // AF: obj = this.items
  private List items;

  // @effects obj = items
  ListQueue(List items) {

    this.items = items;
  }

• Correctness of constructor:

items	 =
	 	



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {

  // AF: obj = this.items
  private List items;

  // @effects obj = items
  ListQueue(List items) {

    this.items = items;
  }

• Correctness of constructor:

items	 =	this.items	 	 	 	 	 (from code)
	 	 =	obj	 	 	 	 	 	 AF



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {

  // AF: obj = this.items
  private List items;

  // @returns [x] ++ obj
  public NumberQueue enqueue(int x) {
    return new ListQueue(cons(x, this.items));
  };

• Correctness of enqueue:

return	value	 =



Implementing a Queue with a List

// Implements a queue with a list.
class ListQueue implements NumberQueue {

  // AF: obj = this.items
  private List items;

  // @returns [x] ++ obj
  public NumberQueue enqueue(int x) {
    return new ListQueue(cons(x, this.items));
  };

• Correctness of enqueue:

return	value	 =	x	::	this.items	 	 	 	 spec of constructor
	 	 	 =	x	::	obj		 	 	 	 	 AF
	 	 	 =	[]	⧺	(x	::	obj)	 	 	 	 def of concat
	 	 	 =	[x]	⧺	obj	 	 	 	 	 def of concat



Summary of ListQueue

• Simplest possible implementation of ADT
– abstract state = concrete state of one field

• Reasoning about every method is more complex
– must apply AF to relate return value to spec’s postcondition

code uses fields, but postcondition uses “obj”

– this is the cost of the abstraction barrier



Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)
  private List front;
  private List back;   // in reverse order

• Back part stored in reverse order
– head of front is the first element
– head of back is the last element

1 2 nil

4 3 nil

this.front	=

this.back	=

1 2

4 3nil

obj	=



Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)
  // RI: if this.back = nil, then this.front = nil
  private List front;
  private List back;

• If back is nil, then the queue is empty
– if back	=	nil, then front	=	nil (by RI) and thus

	 obj	 =
	 	
	 	



Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)
  // RI: if this.back = nil, then this.front = nil
  private List front;
  private List back;

• If back is nil, then the queue is empty
– if back	=	nil, then front	=	nil (by RI) and thus

	 obj	 =	nil	⧺	rev(nil)	 	 	 	 	 by AF
	 	 =	rev(nil)	 	 	 	 	 	 def of concat
	 	 =	nil	 	 	 	 	 	 	 def of rev

– if the queue is not empty, then back is not nil
(311 alert: this is the contrapositive)



Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

  // AF: obj = this.front ++ rev(this.back)
  // RI: if this.back = nil, then this.front = nil
  private List front;
  private List back;

  // makes obj = front ++ rev(back)
  ListPairQueue(List front, List back) {

    …
  }

• Will implement this later…



Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)
private List front;
private List back;

// @returns len(obj)
public int size() {
  return len(this.front) + len(this.back);
};

• Correctness of size:

len(obj)	 =
	 	
	 	



Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)
private List front;
private List back;

// @returns len(obj)
public int size() {
  return len(this.front) + len(this.back);
};

• Correctness of size:

len(obj)	 =	len(this.front	⧺	rev(this.back))	 	 	 by AF
	 	 =	len(this.front)	+	len(rev(this.back))	 	 by Example 3
	 	 =	len(this.front)	+	len(this.back)	 	 	 by another
                 induction



Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)
private List front;
private List back;

// @returns [x] ++ obj
public NumberQueue enqueue(int x) {
  return new ListPairQueue(cons(x, this.front), this.back)
}

• Correctness of enqueue:

ret	value	=



Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)
private List front;
private List back;

// @returns [x] ++ obj
public NumberQueue enqueue(int x) {
  return new ListPairQueue(cons(x, this.front), this.back)
}

• Correctness of enqueue:

ret	value	=	(x	::	this.front)	⧺	rev(this.back)	 	 spec of constructor
		 	 =	x	::	(this.front	⧺	rev(this.back))	 	 def of concat
	 	 =	x	::	obj		 	 	 	 	 	 	 AF
	 	 =	[]	⧺	(x	::	obj)	 	 	 	 	 	 def of concat
	 	 =	[x]	⧺	obj	 	 	 	 	 	 	 def of concat



Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)
private List front;
private List back;

// @requires len(obj) > 0
// @returns (x, Q) with obj = Q ++ [x]
public DequeueParts dequeue() {
  return new DequeueParts(this.back.hd,
          new ListPairQueue(this.front, this.back.tl));
};

– as noted previously, precondition means this.back	≠	nil
– as we know, this means this.back	=	x	::	L

where x	=	this.back.hd and some L	=	this.back.tl



Implementing a Queue with Two Lists

// @requires len(obj) > 0
// @returns (x, Q) with obj = Q ++ [x]
public DequeueParts dequeue() {
  return new DequeueParts(this.back.hd,
          new ListPairQueue(this.front, this.back.tl));
};

– this.back	=	x	::	L,	where	x	=	this.back.hd	and	L	=	this.back.tl

obj	 =	
	 …

	 …
	 =	(this.front	⧺	rev(this.back.tl))	⧺	[this.back.hd]



Implementing a Queue with Two Lists

// @requires len(obj) > 0
// @returns (x, Q) with obj = Q ++ [x]
public DequeueParts dequeue() {
  return new DequeueParts(this.back.hd,
          new ListPairQueue(this.front, this.back.tl));
};

– this.back	=	x	::	L,	where	x	=	this.back.hd	and	L	=	this.back.tl

obj	 =	this.front	⧺	rev(this.back)	 	 	 	 	 by AF
	 =	this.front	⧺	rev(this.back.hd	::	this.back.tl)	 	 since back	=	x	::	L
	 =	this.front	⧺	(rev(this.back.tl)	⧺	[this.back.hd])	 def of rev
	 =	(this.front	⧺	rev(this.back.tl))	⧺	[this.back.hd]



Well-Known Facts About List Concatenation

• The List notes mention these facts

Identity   L	⧺	nil	=	L	 	 	 	 (nil	⧺	L	=	L	by	definition)

Associativity  (L	⧺	R)	⧺	S	=	L	⧺	(R	⧺	S)

• We will use those going forward



Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)
// RI: if this.back = nil, then this.front = nil
private List front;
private List back;

// makes obj = front ++ rev(back)
ListPairQueue(List front, List back) {

  if (back == null) {
    this.front = null;
    this.back = rev(front);
  } else {
    this.front = front;
    this.back = back;
  }

}

• Need to check that RI holds at end of constructor

holds since this.back	≠	nil

holds since this.front	=	nil



Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)
// RI: if this.back = nil, then this.front = nil
private List front;
private List back;

// makes obj = front ++ rev(back)
ListPairQueue(List front, List back) {

  if (back == null) {
    this.front = null;
    this.back = rev(front);
  } else {
    this.front = front;
    this.back = back;
  }

}

• Need to check this creates correct abstract state

obj	=	front	⧺	rev(back)

obj	=	nil	⧺	rev(rev(front))		??



Implementing a Queue with Two Lists

// AF: obj = this.front ++ rev(this.back)
// RI: if this.back = nil, then this.front = nil
private List front;
private List back;

ListPairQueue(List front, List back) {

  if (back == null) {
    this.front = null;
    this.back = rev(front);
  } else {
    …
  }

}

obj	 =	nil	⧺	rev(rev(front))		 	 	 	 AF
	 =	nil	⧺	front	 	 	 	 	 	 	 because I said so
	 =	front	 	 	 	 	 	 	 	 def of concat
	 =	front	⧺	nil	 	 	 	 	 	 	
	 =	front	⧺	rev(nil)	 	 	 	 	 	 def of rev
	 =	front	⧺	rev(back)	 	 	 	 	 since back	=	nil



Correct ADT Implementation
(Mutable Case)



Mutable ADTs

• Previously:
– state was immutable
– set in the constructor and then never changed

only need to confirm RI holds at the end of the constructor
if RI holds there, then it holds forever

• Now:
– allow state to be changed by methods



Correctness of Mutable ADTs

• Check that the constructor…
– creates a concrete state satisfying RI
– creates the abstract state required by the spec

• Check the correctness of each observer method…
– check value returned is the one stated by the spec

• Check the correctness of each mutator method…
– check abstract state produced is one stated by the spec
– check that the RI still holds
– make sure there are no aliases



Recall: Mutable Version of Fast List ADT

// Represents a mutable list of numbers.
interface MutableFastList {

  // @return last(obj)
  int getLast();

  // @return obj
  List getList();

  // @modifies obj
  // @effects obj = x :: obj_0
  void cons(int x);
}

mutator method



Recall: One Concrete Rep for FastList

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // makes obj = list
  MutableFastListImpl(List list) {

    this.list = list;
    this.last = last(this.list);
  }
  

• We can use the same rep for a mutable version



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @modifies obj
  // @effects obj = x :: obj_0
  public void cons(int x) {
    this.list = cons(x, this.list);
  };
  

• Let’s check correctness…



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @modifies obj
  // @effects obj = x :: obj_0
  public void cons(int x) {
    this.list = cons(x, this.list);
    {{	this.list	=	x	::	this.list0	}}
    {{	Post:	obj	=	x	::	obj0	}}
  };
  



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @modifies obj
  // @effects obj = x :: obj_0
  public void cons(int x) {
    this.list = cons(x, this.list);
    {{	this.list	=	x	::	this.list0	}}
    {{	Post:	obj	=	x	::	obj0	}}
  };
  

obj	 =	this.list	 	 	 	 	 by AF
	 =	x	::	this.list0		 	 	 	 since this.list	=	x	::	this.list0
	 =	x	::	obj0	 	 	 	 	 by AF

What is missing?

Also, need the RI to hold!



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @modifies obj
  // @effects obj = x :: obj_0
  public void cons(int x) {
    this.list = cons(x, this.list);
    {{	this.list	=	x	::	this.list0	}}
    {{	Post:	obj	=	x	::	obj0	and
    this.last	=	last(this.list)	}}
  };
  

• Postcondition is @returns, @effects, and RI

Also, need the RI to hold!

Does it? No!



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @modifies obj
  // @effects obj = x :: obj_0
  public void cons(int x) {
    this.list = cons(x, this.list);
    this.last = last(this.list);
    {{	this.list	=	x	::	this.list0	and	this.last	=	last(this.list)	}}
    {{	Post:	obj	=	x	::	obj0	and	this.last	=	last(this.list)	}}
  };

Rep Invariant now holds



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @modifies obj
  // @effects obj = x :: obj_0
  public void cons(int x) {
    this.last = last(this.list);
    {{	this.last	=	last(this.list)	}}
    this.list = cons(x, this.list);
    {{	this.list	=	x	::	this.list0	and	this.last	=	last(this.list0)	}}
    {{	Post:	obj	=	x	::	obj0	and	this.last	=	last(this.list)	}}
  };

Rep Invariant would not hold if we switched the order



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @modifies obj
  // @effects obj = x :: obj_0
  public void cons(int x) {
    this.list = cons(x, this.list);
    this.last = last(this.list);
    {{	this.list	=	x	::	this.list0	and	this.last	=	last(this.list)	}}
    {{	Post:	obj	=	x	::	obj0	and	this.last	=	last(this.list)	}}
  };

This version is obviously correct, but O(n).

Can we do it faster?



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {
  // RI: this.last = last(this.list)
  // AF: obj = this.list
  private int last;
  private List list;

  // @modifies obj
  // @effects obj = x :: obj_0
  public void cons(int x) {
    if (this.list == null)
      this.last = x;
    this.list = cons(x, this.list);
    {{	_____________________________________________________________	}}
    {{	Post:	obj	=	x	::	obj0	and	this.last	=	last(this.list)	}}
  };

O(1) version, but more complex reasoning (two branches)



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {

  public void cons(int x) {
    if (this.list == null)
      this.last = x;
    this.list = cons(x, this.list);
    {{	this.list	=	x	::	this.list0	and	this.list0	=	nil	and	this.last	=	x	}}
    {{	Post:	obj	=	x	::	obj0	and	this.last	=	last(this.list)	}}
  };

Case “then”:

last(this.list)	 =	last(x	::	this.list0)	 	 	 	 since this.list	=	x	::	this.list0
	 	 	 =	last(x	::	nil)		 	 	 	 	 since this.list0	=	nil
  	 =	x	 	 	 	 	 	 	 	 def of last
	 	 	 =	this.last	 	 	 	 	 	 since x	=	this.last

last(x	::	nil)	 	 :=		x	
last(x	::	y	::	L)		 :=	last(y	::	L)



Mutable List ADT with a Fast getLast

class MutableFastListImpl implements MutableFastList {

  public void cons(int x) {
    if (this.list == null)
      this.last = x;
    this.list = cons(x, this.list);
    {{	this.list	=	x	::	this.list0	and	this.list0	≠	nil	and
																this.last	=	this.last0	and	this.last0	=	last(this.list0)	}}
    {{	Post:	obj	=	x	::	obj0	and	this.last	=	last(this.list)	}}

Case “else”:

last(this.list)	 =	last(x	::	this.list0)	 	 	 since this.list	=	x	::	this.list0
	 	 	 =	last(this.list0)	 	 	 	 def of last	(since this.list0	≠	nil)
  	 =	this.last0	 	 	 	 	 since this.last0	=	last(this.list0)
	 	 	 =	this.last	 	 	 	 	 since this.last	=	this.last0

from the RI
(will need this) 

last(x	::	nil)	 	 :=		x	
last(x	::	y	::	L)		 :=	last(y	::	L)



Defensive Programming



Defensive Programming

• We try to catch all bugs via
1. Type checking
2. Reasoning
3. Testing

• But some will get through…

• Add extra checks to catch them
– reduces the work of debugging
– we call this "defensive programming"



Defensive Programming

1. Add checks for invalid inputs
– clients should not pass them

they violate the precondition

– given enough clients, some will pass invalid inputs

• EJ 49: check parameters for validity

• Check these if's not too expensive
– would only skip if it would cause asymptotic slowdown
– e.g., binary search cannot check the array is sorted



Defensive Programming

2. Check that the RI holds at the end of mutators
– mutation could produce an invalid state
– would cause painful debugging

code doesn't crash then
failure doesn't occur until the next method call (or later)

– we call this method "checkRep" in 331

• Worth checking even if it is expensive
– add a flag to enable them when testing



Defensive Programming

3. Check that the RI holds at the start of mutators
– wait, why?
– that's not even possible… is it?

• Can happen with rep exposure
– mutation through an alias that breaks the RI
– could be worse

they could mutate it in a way that doesn't break the RI
it's likely still a bug because the abstract state was wrongly changed



Using Mutable ADTs



Recall: Mutable Version of Fast List ADT

// Represents a mutable list of numbers.
interface MutableFastList {

  // @return last(obj)
  int getLast();

  // @returns first(obj), where
  //     first(nil)    := 0
  //     first(x :: L) := x
  int getFirst();

  // @return obj
  List getList();

  // @modifies obj
  // @effects obj = x :: obj_0
  void cons(int x);
}



Using the Mutable List ADT

// @requires L != nil
// @modifies R
// @effects R = (m+k) :: … :: (m+1) :: R_0,
//    where m = first(L)
void g(MutableFastList L, MutableFastList R, int k) {
  int i = 1;
  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0
  while (i <= k) {
    int m = L.getFirst();
    R.cons(m + i);
    i++;

  }
};



Using the Mutable List ADT

// @requires L != nil
// @modifies R
// @effects R = (m+k) :: … :: (m+1) :: R_0,
//    where m = first(L)
void g(MutableFastList L, MutableFastList R, int k) {
  int i = 1;
  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0
  while (i <= k) {
    {{	R	=	(m+i-1)	::	…	::	(m+1)	::	R0	}}
    int m = L.getFirst();
    R.cons(m + i);

    i++;

    {{	R	=	(m+i-1)	::	…	::	(m+1)	::	R0	}}
  }



Using the Mutable List ADT

// @requires L != nil
// @modifies R
// @effects R = (m+k) :: … :: (m+1) :: R_0,
//    where m = first(L)
void g(MutableFastList L, MutableFastList R, int k) {
  int i = 1;
  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0
  while (i <= k) {
    {{	R	=	(m+i-1)	::	…	::	(m+1)	::	R0	}}
    int m = L.getFirst();
    {{	R	=	(m+i-1)	::	…	::	(m+1)	::	R0	and	m	=	first(L)	}}
    R.cons(m + i);
    i++;

    {{	R	=	(m+i-1)	::	…	::	(m+1)	::	R0	}}
  }



Using the Mutable List ADT

// @requires L != nil
// @modifies R
// @effects R = (m+k) :: … :: (m+1) :: R_0,
//    where m = first(L)
void g(MutableFastList L, MutableFastList R, int k) {
  int i = 1;
  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0
  while (i <= k) {
    int m = L.getFirst();
    {{	R	=	(m+i-1)	::	…	::	(m+1)	::	R0	and	m	=	first(L)	}}
    R.cons(m + i);

    {{	R	=	(m+i)	::	R1	and	R1	=	(m+i-1)	::	…	::	(m+1)	::	R0	and	m	=	first(L)	}}
    i++;

    {{	R	=	(m+i-1)	::	…	::	(m+1)	::	R0	}}
  }



Using the Mutable List ADT

// @requires L != nil
// @modifies R
// @effects R = (m+k) :: … :: (m+1) :: R_0,
//    where m = first(L)
void g(MutableFastList L, MutableFastList R, int k) {
  int i = 1;
  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0
  while (i <= k) {
    int m = L.getFirst();
    R.cons(m + i);
    {{	R	=	(m+i)	::	R1	and	R1	=	(m+i-1)	::	…	::	(m+1)	::	R0	and	m	=	first(L)	}}
    {{	R	=	(m+i)	::	…	::	(m+1)	::	R0	}}
    i++;

    {{	R	=	(m+i-1)	::	…	::	(m+1)	::	R0	}}
  }



Using the Mutable List ADT

// @requires L != nil
// @modifies R
// @effects R = (m+k) :: … :: (m+1) :: R_0,
//    where m = first(L)
void g(MutableFastList L, MutableFastList R, int k) {
  int i = 1;
  // Inv: R = (m+i-1) :: … :: (m+1) :: R_0
  while (i <= k) {
    int m = L.getFirst();
    R.cons(m + i);
    {{	R	=	(m+i)	::	R1	and	R1	=	(m+i-1)	::	…	::	(m+1)	::	R0	and	m	=	first(L)	}}
    {{	R	=	(m+i)	::	…	::	(m+1)	::	R0	}}
    i++;

  }
};

R	=	(m+i)	::	R1
	 =	(m+i)	::	(m+i-1)	::	…	::	(m+1)	::	R0		 since	R1	=	…



Using the Mutable List ADT

void g(MutableFastList L, MutableFastList R, int k)

• We have proven this code correct, but…

• We should also try it…

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

Donald Knuth, 1977



Using the Mutable List ADT

// @effects R = (m+k) :: … :: (m+1) :: R_0,
//    where m = first(L)
void g(MutableFastList L, MutableFastList R, int k)

• Try out the code:
… // L = 2 :: 1
… // R = 2 :: 1
g(L, R, 3)

System.out.println(R);

• What list should this print?

5	::	4	::	3	::	2	::	1	::	nil



Using the Mutable List ADT

// @effects R = (m+k) :: … :: (m+1) :: R_0,
//    where m = first(L)
void g(MutableFastList L, MutableFastList R, int k)

• Try out the code:
… // L = 2 :: 1
… // R = 2 :: 1
g(L, R, 3)

System.out.println(R);

• Instead, it prints 8	::	5	::	3	::	2	::	1	::	nil	! How?!?

L and R are aliases to the same MutableFastList



Reasoning with Aliases

• Aliasing breaks reasoning!
– there was nothing wrong with our math
– our math did not correctly describe the program

modeling programs with aliasing is basically impossible



Another Mutable Queue ADT

• Another mutable version with different methods

// Mutable array that only supports adding to the front
// and removing from the end.
interface MutableNumberQueue {

  // @returns obj
  List<Integer> elements();

  // @modifies obj
  // @effects obj = [x] ++ obj_0
  void enqueue(int x);

  // @requires len(obj) > 0
  // @modifies obj
  // @effects obj_0 = obj ++ [x]
  // @returns x
  int dequeue();
}



Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back
  private ArrayList<Integer> front;
  private ArrayList<Integer> back;

  // @effects obj = vals
  ArrayPairQueue(ArrayList<Integer> vals) {
    this.front = new ArrayList<>();
    this.back = vals;
  }

We should check this…



Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back
  private ArrayList<Integer> front;
  private ArrayList<Integer> back;

  // @effects obj = vals
  ArrayPairQueue(ArrayList<Integer> vals) {
    this.front = new ArrayList<>();
    this.back = vals;
    {{	this.front	=	[]	and	this.back	=	vals	}}
    {{	Post:	obj	=	vals	}}
  }



Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back
  private ArrayList<Integer> front;
  private ArrayList<Integer> back;

  // @effects obj = vals
  ArrayPairQueue(ArrayList<Integer> vals) {
    this.front = new ArrayList<>();
    this.back = vals;
    {{	this.front	=	[]	and	this.back	=	vals	}}
    {{	Post:	obj	=	vals	}}
  }

obj	 =	rev(this.front)	⧺	this.back	 	 by AF
	 =	rev([])	⧺	this.back	 	 	 	 since this.front	=	[]
	 =	[]	⧺	this.back	 	 	 	 	 def of rev
	 =	this.back	=	vals	 	 	 	 	 since this.back	=	vals	 	

Is this really correct?

No way to know for sure
at the next method call!



Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back
  private ArrayList<Integer> front;
  private ArrayList<Integer> back;

  // @effects obj = vals
  ArrayPairQueue(ArrayList<Integer> vals) {
    this.front = new ArrayList<>();
    this.back = new ArrayList<>(vals);
  }

• Must make a copy of the array!
– then, we have the only reference to it (no aliases)



Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back
  private ArrayList<Integer> front;
  private ArrayList<Integer> back;

  // @returns obj
  public List<Integer> elements() {
    ArrayList<Integer> result = new ArrayList<>();
    result.addAll(this.front);
    Collections.reverse(result);

    result.addAll(this.back);
    return result;
  };

This is O(n)…

We can optimize it if front = [].

rev([])	⧺	this.back	=	[]	⧺	this.back		=	this.back



Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back
  private ArrayList<Integer> front;
  private ArrayList<Integer> back;

  // @returns obj
  public List<Integer> elements() {
    if (this.front.size() == 0) {
      return this.back;   // O(1) when this.front = []
    } else {
      ArrayList<Integer> result = new ArrayList<>();
      result.addAll(this.front);
      Collections.reverse(result);

      result.addAll(this.back);
      return result;
    }
  };

Is this correct?

No way to say!



Implementing Mutable Queue with Two Arrays

// Implements a mutable queue using two arrays.
class ArrayPairQueue implements MutableNumberQueue {

  // AF: obj = rev(this.front) ++ this.back
  private ArrayList<Integer> front;
  private ArrayList<Integer> back;

  // @returns obj
  public List<Integer> elements() {
    ArrayList<Integer> result = new ArrayList<>();
    result.addAll(this.front);
    Collections.reverse(result);

    result.addAll(this.back);
    return result;
  };

• Cannot return an alias to this.back
– must make a copy in all cases



Moral of the Story for Mutable Heap State

• More mutation gave us better efficiency
– saved memory
– immutable version could be just as fast

• More mutation means more complex reasoning
– more facts to keep track of
– more ways to make mistakes
– more work to make sure we did it right

• New possibilities for exciting bugs!
– must avoid aliasing of anything mutable

this is “representation exposure”



Need for Mutable Heap State

• Saw that aliased mutable heap state is complex
– avoid mixing aliasing and mutation

• Use coding conventions depending on context
1. server-side data storage – mutation without aliasing
2. client-side UI  -- aliasing without mutation

• In other cases, may need other conventions 
– two phase builder pattern


