
Mutation of Heap State
James Wilcox and Kevin Zatloukal

CSE 331

331 So Far…

• Saw how to implement ADTs without mutation

• Introducing more mutation going forward
– core idea is that mutation makes things harder

• Introduced local variable mutation last time
– causes some difficulty for implementers

need to reason line-by-line for any variable that is mutated

– causes no difficulty for clients
they literally cannot tell the difference

When we mutate objects and arrays...

• Objects and arrays are "heap" data
– can still be in use after the call returns

• Mutation of heap data is different
– clients can see that mutation occurred!

• So, we must also update specifications
– need to explain any possible mutation that may happen

by default, nothing is being mutated

– higher likelihood of potential bugs
miscommunication between programmers is a common cause

– these will be harder to debug

Plan for today

Learn how to specify heap mutation for clients
1. Mutation in simple functions (revisit Topic 1)
2. Mutation in ADTs (revisit Topic 3)

Mutation of Arguments

Recall: Writing Method Specifications in Java

• Every input falls in one of three cases:
1. input is disallowed
2. input is allowed and will return something
3. input is allowed and will throw something

• Item 1 is the precondition
– explained in @param and @requires

• Items 2-3 are the postcondition
– explained in @return and @throws

Writing Method Specifications in Java

• Every input falls in one of three cases:
1. input is disallowed
2. input is allowed and will return something
3. input is allowed and will throw something

• The postcondition can also include mutation
– client will see that something argument was changed
– explained in @modifies and @effects

Describing Mutation in Specifications

• List anything that may change in @modifies
– anything not listed is assumed not modified
– no @modifies means nothing is mutated

• Results of the mutation listed in @effects
– promises about the state when the call returns
– no @effects means any change is possible

// @modifies A
// @effects all entries of A set to zero
void clear(int[] A)

Example 1

/**

 * Changes the first instance of v in A to w
 * @param A The list to look in. Must be non-null
 * @param v The value to look for
 * @param w The value to replace the first v with
 * @modifies A
 * @effects changes A[i] to w, where i is the
 * smallest index with A[i] = v, and leaves

 * A[j] unchanged for all j != i
 * @throws NotFound if no such index i exists
 */

void changeFirst(List<Integer> A, int v, int w)

Recall: Example 2

/**

 * Returns the concatenation of two lists.
 * @param A The first list. Must be non-null
 * @param B The second list. Must be non-null
 * @return A ++ B
 */

List<Integer> concat(
 List<Integer> A, List<Integer> B)

How would we change this to mutate instead?

Example 2

/**

 * Returns the concatenation of two lists.
 * @param A The first list. Must be non-null
 * @param B The second list. Must be non-null
 * @modifies A
 * @effects A = A_0 ++ B
 */
void concat(List<Integer> A, List<Integer> B)

What about a version that modifies B instead?

We are now using Floyd logic in the spec!

Is there any scenario where both arguments are modified?

Example 3

/**

 * Returns the number of common elements in both
 * A and B. Sorts A and B in the process.

 * @param A The first list. Must be non-null
 * @param B The second list. Must be non-null
 *

 *
 *

 *
 */
int commonElems(List<Integer> A, List<Integer> B)

How should we specify this?

Example 3

/**

 * Returns the number of common elements in both
 * A and B. Sorts A and B in the process.

 * @param A The first list. Must be non-null
 * @param B The second list. Must be non-null
 * @modifies A, B
 * @effects A is sorted and B is sorted
 * @returns the number of indexes i such that
 * A[i] also appears in B somewhere
 */
int commonElems(List<Integer> A, List<Integer> B)

Recall: Comparing Specifications

• Specification S1 is stronger than S2…
– whenever is S1 satisfied, S2 is also satisfied
– i.e., satisfying S1 implies satisfying S2

• Changing from S2 to S1 (strengthening)…
– cannot break any clients!
– client works with any implementation satisfying S2

and that includes anything satisfying S1

• But what does this mean…
– in terms of precondition and postcondition

Recall: Comparing Specifications

• Specification S1 is stronger than S2 if it has…
– a weaker precondition and the same postcondition

– a stronger postcondition and the same precondition

– (or both)

P2 P1precondition

postcondition
(for a fixed input)

Q1 Q2

Comparing Specifications With Mutation

• Specification S1 is stronger than S2 if it has…

• A stronger postcondition:
– adds more to @returns
– adds more to @effects
– removes from @modifies

promise is not to modify anything not listed

• A weaker precondition:
– no change here

Example 4

int commonElems(List<Integer> A, List<Integer> B)

// Specification S1
// @modifies A, B
// @effects A is sorted and B is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

// Specification S2
// @modifies A, B
// @effects
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

How does S1 relate to S2?

Example 5

int commonElems(List<Integer> A, List<Integer> B)

// Specification S3
// @modifies A, B
// @effects A is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

// Specification S4
// @modifies A
// @effects A is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

How does S3 relate to S4?

Example 5

int commonElems(List<Integer> A, List<Integer> B)

// Specification S1
// @modifies A, B
// @effects A is sorted and B is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

// Specification S4
// @modifies A
// @effects A is sorted
// @returns the number of indexes i such that
// A[i] also appears in B somewhere

How does S1 relate to S4?

Mutation in ADTs

Recall: Mutable vs Immutable ADTs

 Immutable Mutable
observers ✅ ✅

mutators ❌ ✅
producers ✅ ❌ (usually not)

• Sensible to pick one or the other
– would be dangerous to provide both

will see why later on

Recall: Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {

 // Returns the last element of the list (O(1) time)
 // @requires obj != nil
 // @return last(obj)
 int getLast();

 // Returns the object as a regular list of items.
 // @return obj
 List getList();

observer

observer

Recall: Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {
 …

 /**
 * Returns a new list with x in front of this list.
 * @return x :: obj
 */
 FastList cons(int x);

• How do we make this a mutator?

producer

Specifying a Mutable FastList

/**
 * A mutable list of integers that can retrieve the
 * last element in O(1) time.
 */
interface MutableFastList {
 …

 /**
 * Adds x to the front of this list.
 * @modifies obj
 * @effects obj = x :: obj_0
 */
 void cons(int x);

• Changes obj to have x at the beginning

Recall: Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return x */
 double getX();

 /** @return y */
 double getY();

• Abstract state is a pair (x,	y)
– i.e., we have (x,	y)	:=	obj
– so, we can refer to "x" and "y"

Recall: Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return (x^2 + y^2)^(1/2) */
 double getR();

 /** @return arctan(y/x) */
 double getTheta();

• Imperative specifications
– code may or may not actually do these calculations
– PolarPoint just returns the value in a field

Recall: Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return (x + dx, y + dy) */
 Point shiftBy(double dx, double dy);

• How do we make this a mutator?

Specifying a Mutable Point

/** Represents a mutable (x, y) point in 2D space. */
interface MutablePoint {

 /**
 * Moves the point right by dx and up by dy
 * @modifies obj
 * @effects obj = (x_0 + dx, y_0 + dy)
 */
 void shiftBy(double dx, double dy);

Recall: Immutable Queue

• A queue is a list that can only be changed two ways:
– add elements to the front
– remove elements from the back

// List that only supports adding to the front and
// removing from the end
interface NumberQueue {

 // @return len(obj)
 int size();

 // @return [x] ++ obj
 NumberQueue enqueue(int x);

 // @requires len(obj) > 0
 // @return (x, Q) with obj = Q ++ [x]
 DequeueParts dequeue();

}

class DequeueParts {
 public final NumberQueue Q;
 public final int x;
}

Which method(s) change
in a mutable version?

Mutable Queue

 // @return [x] ++ obj
 NumberQueue enqueue(int x);

• How do we make this mutable?

 // @modifies obj
 // @effects obj = [x] ++ obj_0
 void enqueue(int x);

Mutable Queue

 // @requires len(obj) > 0
 // @return (x, Q) with obj = Q ++ [x]
 DequeueParts dequeue();

• How do we make this mutable?

 // @modifies obj
 // @effects obj_0 = obj ++ [x]
 // @return x
 int dequeue();

Mutable Queue

• Note the symmetry between these operations:

 // @modifies obj
 // @effects obj = [x] ++ obj_0
 void enqueue(int x);

 // @modifies obj
 // @effects obj_0 = obj ++ [x]
 // @return x
 int dequeue();

Which one of these is declarative?

Converting Between Mutators and Producers

• We can transform between these in general
– assume that "T" is our interface

 // @return f(obj, x)
 T produce(int x);

 // @modifies obj
 // @effects obj = f(obj_0, x)
 void mutate(int x);

1. change return type
2. change @return expression

into @effects obj = expression

Aliasing

Recall: Binary Search Trees

• Consider the following tree
– searching for "4" proceeds as follows:

• Suppose someone changed "3" into "5"…

6

3

1 4

9

8

Recall: Binary Search Trees

• Suppose someone changed "3" into "5"…
– now this happens when we search for "4":

– It can no longer be found!
Doesn't crash. It's just not found.

– Problem doesn't occur on the line with the change

6

5

1 4

9

8

Scary Bugs

• Do not fear crashes
– often no debugging at all

get a stack trace that tells you exactly where it went wrong

• Do fear unexpected mutation
– failure will give you no clue what went wrong

will take a long time to realize the BST invariant was violated by mutation

– bug could be almost anywhere in the code
anyone who mutates a TreeNode could have caused it

– could take weeks to track it down

Another Example

class Name {
 private String first;
 private String last;

 public String toString() {
 return first + " " + last;
 }

 public void capitalize() {
 this.first = first.substring(0, 1).toUpperCase()
 + first.substring(1);

 this.second = second.substring(0, 1).toUppercase()
 + second.substring(1);

 }
}

Somewhere else…
Map<Name, Integer> M;

Even Worse in C/C++

• C/C++ strings are mutable
– commonly used as map keys
– this sort of bug is still very common

• Java strings are immutable
– was hugely controversial at the time

in retrospect, it was clearly a good idea

– other mutable types can still be used as keys

Aliases

• Extra references to an object are called "aliases"
– possible for any reference type

• Aliases are fine when objects are immutable
– we don’t care if someone else reads the data
– we only care if someone mutates it

• Aliases are scary when objects are mutable…
– creates the potential for failures far from bugs
– that means painful debugging

Mutable Heap State

• “With great power, comes great responsibility”
– Uncle Ben

• With aliases to mutable heap state:
– gain efficiency in some cases
– must keep track of every alias that could mutate that state

any alias, anywhere in the entire program could cause a bug

• EJ 17: minimize mutability in classes

Easy Ways to Stay Safe

1. Do not mutate heap state
– don’t need to think about aliasing at all
– any number of aliases is fine

2. Do not allow aliases…
– create the state in your constructor and don’t share it

class MyClass {
 // RI: vals is sorted
 private String[] vals;

 public MyClass() {
 this.vals = new String[10]; // only reference
 …

 }

Easy Ways to Stay Safe

• Not enough just to declare it "private"

class MyClass {
 // RI: vals is sorted
 private String[] vals;

 …

 public String[] values() {
 return this.vals;
 };

– anyone can get an alias by calling values()

• "private" is a clue that aliases might be bad

this is "representation exposure"
we wil treat it as a bug

Easy Ways to Stay Safe

2. Do not allow aliases
 (a) do not hand out aliases yourself

– return copies instead

class MyClass {
 // RI: vals is sorted
 private String[] vals;

 …

 public String[] values() {
 return this.vals; // unsafe!
 return Arrays.copyOf(this.vals, // make a copy
 this.vals.length);
 };

Easy Ways to Stay Safe

2. Do not allow aliases
 (b) make a copy of anything you want to keep

– does not matter if the caller mutates the original

class MyClass {
 // RI: vals is sorted
 private String[] vals;

 …

 // @requires A is sorted
 public MyClass(String[] A) {
 this.vals = A; // unsafe!
 this.vals = Arrays.copyOf(A, // make a copy
 A.length);
 };

Easy Ways to Stay Safe

1. Do not use mutable state
– don’t need to think about aliasing at all
– any number of aliases is fine

2. Do not allow aliases to mutable state
a) do not hand out aliases yourself
b) make a copy of anything you want to keep

• For 331, mutable aliasing across files is a bug!
– gives other parts the ability to break your code
– we will stick to these simple strategies for avoiding it

ensures only one reference to the object (no aliases)

An Advanced (Two-Stage) Approach

• Mutable object has only one reference (owner)
– one reference that is allowed to use & mutate it

• Object is eventually “frozen”, making it immutable
– no longer necessary to track ownership

• Example: Java’s StringBuilder vs String
– StringBuilder is mutable (be careful!)
– StringBuilder.toString returns the value as a String
– String is immutable

Rules of Thumb

Client Side

1. Data is small
– anything on screen is O(1)

2. Aliasing is common
– UI design forces modules
– data is widely shared

Rule: avoid mutation
– create new values instead
– performance will be fine

Server Side

1. Data is large
– efficiency maters

2. Aliasing is avoidable
– you decide on modules
– data is not widely shared

Rule: avoid aliases
– do not allow aliases to your data
– hand out copies not aliases
– (good enough for us in 331)

Using List

• Same issue arises with List as with arrays

class MyClass {
 // RI: vals is sorted
 private List<String> vals;

 public List<String> values() {
 return this.vals; // unsafe
 };

– since a List is mutable, we cannot create aliases

Another Alternative

• With List, a third option is sometimes used:

class MyClass {
 // RI: vals is sorted
 private List<String> vals;

 public List<String> values() {
 return Collections.unmodifiableList(this.vals);
 };

– throws an exception when mutators are called
– runs in O(1) time instead of O(n) to copy

Can this change break the client?

Another Alternative

• This can break clients
– this works with a copy

MyClass m = …;
List<String> list = m.values()

list.add("another");

– but not with UnmodifiableList

• Specification must make clear the behavior
– how do the two options relate?

Another Alternative

• These two are incomparable
– they have differing behavior
– client can work with one but not the other and v.v.

• How is this possible when both return List?
– the unmodifiable list does not implement List!

the spec doesn't let you throw on any call to add

– this is a terrible idea
but occasionally necessary in extreme circumstances

• Really these are different return types
– would be better to make then different interfaces

Unmodifiable View

• Unmodifiable list is a "view" of the underlying list

• It changes whenever the underlying list changes
– updates to that list show up in the view immediately
– it is not a copy of the data at that point

• This can lead to difficult bugs
– do not use such a view as a key in a map
– any alias to it can mutate it at any point

Unmodifiable View

• Why would someone do this?

• Like most CS bugs, it is for performance
– we all know that O(1) is better than O(n)

• But most client uses are O(n) anyway!
– client probably wants to loop through the list
– in that case, there is no O(..) gain to

• We will stick to immutable or copying (no aliases)

Module Design

Module Design

"Designing modules is the heart of software design."
— Michael Ernst

• In Java, a "module" is a file or a top-level class

• Module design is an enormous subject
– can look for many properties such as decomposability,

composability, understandability, continuity, isolation

• We will keep things simpler…

Module Design

• Modules should have
– high cohesion
– low coupling

• Cohesion: the parts go together
– they all serve one purpose or represent one concept
– examples: an ADT, java.util.Arrays
– non-example: one class for sorting, drawing, & printing
– primarily about the specification

Module Design

• Modules should have
– high cohesion
– low coupling

• Coupling: the parts only understandable together
– must learn both to understand either
– example: an immutable ADT
– non-example: a mutable ADT that allows aliases

must understand how all aliases are used to know if it's correct

– primarily about the implementation
– will see another non-example next time..

Coupling Is Bad

• Coupling makes the code less understandable
– truth for both humans and AI
– highly coupling becomes "spaghetti code"
– often shows up as a "god class"

• Coupling makes the code hard to change
– all the interrelated parts may require changes

• Coupling creates potential for painful debugging
– bugs in one piece can cause failures in another
– e.g., any misuse of an alias can break use by any other alias

Subclasses

Subclasses

• Subclassing is a means of sharing code
– subclass gets parent fields & methods (unless overridden)

class Product {
 private String name;
 private int price;
 public String getName() {return name; }
 public int getPrice() { return price; }
}

class SaleProduct extends Product {
 private float discount;
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

Subclasses

• Subclassing is a surprisingly dangerous feature

• Subclassing tends to break modularity
– creates tight coupling between super- and sub-class
– often see the “fragile base class” problem

changes to super class often break subclasses

• Let’s see some examples…

Example 1: Tight Coupling

class Product {
 private int price;
 public int getPrice() { return price; }

 // @returns true iff obj’s price < p’s price
 public boolean isCheaperThan(Product p) {
 return getPrice() < p.getPrice();
 }

}

class SaleProduct extends Product {
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

– looks okay so far…

Example 1: Tight Coupling

class Product {
 private int price;
 public int getPrice() { return price; }

 // @returns true iff obj’s price < p’s price
 public boolean isCheaperThan(Product p) {
 return this.price < p.price;
 }

}

class SaleProduct extends Product {
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

Made it faster by eliminating a method call!

What’s wrong?

Oops! Broke the subclass

Example 2: Tight Coupling

class InstrumentedHashSet extends HashSet<Integer> {
 private static int count = 0;

 public boolean add(Integer e) {
 count += 1;
 return super.add(e);
 }

 public boolean addAll(Collection<Integer> c) {
 count += c.size();

 return super.addAll(c);
 }

 public int getCount() { return count; }
}

– what could possibly go wrong?

Example 2: Tight Coupling

InstrumentedHashSet S = new InstrumentedHashSet();
System.out.println(S.getCount()); // 0
S.addAll(Arrays.asList(1, 2));
System.out.println(S.getCount());

– what does this print?

• What is printed depends on HashSet’s addAll:
– if it calls add, then this prints 4
– if it does not call add, then this prints 2

• Also possible to be dependent on order of calls

// 4?!?

Subclassing Creates Tight Coupling

• Creates tight coupling between super- and sub-class

• Example 1: super-class needs to know about subclass
– direct field access in parent breaks subclass

• Example 2: subclass needs to know about super-class
– subclass dependent on which methods call each other

• But wait… There’s more!

Example 3: Tight Coupling

class WorkList {
 // RI: len(names) = len(times) and total = sum(times)
 protected ArrayList<String> names;
 protected ArrayList<Integer> times;
 protected int total;

 public addWork(Job job) {
 addToLists(job.getName(), job.getTime());

 total += job.getTime();
 }

 protected addToLists(String name, int time) {
 names.add(name);

 times.add(time);
 }

}

Example 3: Tight Coupling

// Makes sure no task is too large compared to rest
class BalancedWorkList extends WorkList {
 protected addToLists(String name, int time) {
 if (times.size() <= 3 || 2*time < total)
 super.addToLists(name, time); // okay
 } else {
 throw new ImbalancedWorkException(name, time);
 }
 }

}

– prevents item from being added if too big
– (also: this subclass is not a subtype!)

Example 3: Tight Coupling

class WorkList {
 // RI: len(names) = len(times) and total = sum(times)
 protected ArrayList<String> names;
 protected ArrayList<Integer> times;
 protected int total;

 public addWork(Job job) {
 int time = job.getTime(); // just one call
 total += time;
 addToLists(job.getName(), time);

 }

}

– reordering the updates breaks the subclass!
– subclass is using total that includes the new job

RI not true in method call

Example 3: Tight Coupling

• RI can be false in calls to non-public methods
– only needs to hold at end of the public method

• Requires extra care to get it right
– method is tightly coupled with the ones that call it
– needs to know what is true in those methods

not enough to just know the RI

• Hard for multiple people to communicate this clearly
– can be okay when it’s all your code
– very error prone when methods are written by others

Subclassing Creates Tight Coupling

• Creates tight coupling between super- and sub-class
– direct field access can break subclass
– subclass dependent on which methods call each other
– subclass dependent on order of method calls
– subclass can be called when RI is false

• Often see the “fragile base class” problem

• Subclassing is a surprisingly dangerous feature!
– up to you to verify subclass method specs are stronger
– up to you to prevent tight coupling

Subclassing is Best Avoided

• EJ 19: either design for subclassing or prohibit it
– from Josh Bloch, author of (much of) the Java libraries

• We haven’t used subclassing in our ADTs
– we used interfaces and implemented them with classes
– these problems are the main reason why we avoided it

• Subclassing is not necessary anyway
– we have other ways to share code
– EJ 18: prefer composition to inheritance

Equality

Equity of User-Defined Types

• For any type, useful to know which are “the same”

• Java “==” is not useful on records:

new Integer(1) == new Integer(1) // false!

– this is “reference equality”
– tells you if they refer to the same object in memory

• Checking if the fields are the same is also wrong
– different concrete states can have same abstract state

Storing a List In Two Parts

// Stores a list, split in two parts.
class ListPair implements List {

 // AF: obj = this.front ++ this.back
 private List front;
 private List back;

– three ways of representing the same abstract state:

front	 	 back	 	 front	⧺	back
[1,	2]	 	 []	 	 	 	 [1,	2]
[1]	 	 	 [2]	 	 	 	 [1,	2]
[]	 	 	 [1,	2]	 	 	 [1,	2]

– same abstract states should be considered equal!

Recall: HW3

The abstract state allows duplicates,
but clients can't tell.

Equality on Sets

• Suppose our concrete representation is:

// RI: this.list has no duplicates
// AF: obj = this.list
private List list;

• Method add returns a different list than the spec
– spec says add(1) on [1] returns [1,	1]
– if the code add a second 1, abstract state is still [1]

• Need "equal" that says these states are "the same"
– two abstract states are equal if they contain the same values

equal(L,	R)	:=	true			iff		contains(x,	L)	=	contains(x,	R)	for	any	x

Equality

• Often useful / necessary to define your own equal
– check if references point to records that are “the same”

• Sensible definition should act like “=” in math:

1. equal(a,	a)	=	T for	any	a	:	A

2. equal(a,	b)	=	equal(b,	a)		for	any	a,	b	:	A

3. if	equal(a,	b)	and	equal(b,	c),	then	equal(a,	c)		for	any	…

– (311 alert: this is an “equivalence relation”)
– Java has two more rules for Object.equal

reflexive

symmetric

transitive

Java Equals

• Jave requires the following parts:

1. 	a.equals(a) = true

2. 	a.equals(b) == b.equals(a)

3. 	a.equals(b) and b.equals(c) means a.equals(c)

4. 	a.equals(null) = false

5. 	a.equals(b)	cannot	change	value
	unless	a	or	b	is	mutated

asymmetric with null

consistency

Equals in Java

• Every class inherits an equals method
– this implements reference equality

public class Object {
 public boolean equals(Object o) {
 return this == o;
 }
}

• Make your own equals by overriding it:

public class MyClass {
 public boolean equals(Object o) {
 // … new code here …
 }

}

Example: Duration

• Define Duration to be an amount of time in seconds
– one representation stores separate minutes and seconds

type	Duration	=	{min	:	ℤ,	sec	: ℤ}		with		0	≤	sec	<	60

– second part is a rep invariant

• Can define equality on Duration this way:

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

– true iff these are the same amount of time
(wouldn’t be true without the invariant)

Example: Duration

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

• Does this have the required properties?
– reflexive

equal({min:	m,	sec:	s},	{min:	m,	sec:	s})
				=	(m	=	m)	and	(s	=	s)	 	 	 	 	 def of equal
				=	T	and	T
				=	T

– symmetric

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})
				=	(m	=	n)	and	(s	=	t)	 	 	 	 	 def of equal
				=	(n	=	m)	and	(t	=	s)
				=	equal({min:	n,	sec:	t},	{min:	m,	sec:	s})	 def of equal

proof by calculation
that it holds for any record

Example: Duration

equal({min:	m,	sec:	s},	{min:	n,	sec:	t})			:=			(m	=	n)	and	(s	=	t)

• Does this have the required properties?
– reflexive yes
– symmetric yes
– transitive also yes (but a little long for a slide)

• Good evidence that this is a reasonable definition

Non-Example: “==” in JavaScript

0 == “0”	 	 true
 0 == “”	 	 true
 0 == “ ”	 	 true

• Which property fails?
– transitivity: “” != “ “

• Good evidence that this is not a reasonable definition

Example: Duration in Java

// Represents an amount of time measured in seconds
class Duration {

 // RI: 0 <= sec < 60
 // AF: obj = 60 * this.min + this.sec
 private int min;
 private int sec;

 public boolean equals(Duration d) {
 return this.min == d.min && this.sec == d.sec;
 };

• What is wrong with this?
– it doesn't override equals(Object)

Example: Duration in Java

// Represents an amount of time measured in seconds
class Duration {

 // RI: 0 <= sec < 60
 // AF: obj = 60 * this.min + this.sec
 private int min;
 private int sec;

 public boolean equals(Object o) {
 return this.min == o.min && this.sec == o.sec;
 };

• What is wrong with this?
– it doesn't compile

Example: Duration in Java

// Represents an amount of time measured in seconds
class Duration {

 // RI: 0 <= sec < 60
 // AF: obj = 60 * this.min + this.sec
 private int min;
 private int sec;

 public boolean equals(Object o) {
 if (!(o instanceof Duration))
 return false;

 Duration d = (Duration) o;

 return this.min == d.min && this.sec == d.sec;
 }

• Correct and idiomatic Java

Example: NanoDuration

• Suppose a subclass also measures nanoseconds

class NanoDuration extends Duration {

 // min: number (inherited)
 // sec: number (inherited)
 private int nano;

 …

• How should we define equal?

Example: NanoDuration

class NanoDuration extends Duration {

 // min: number (inherited)
 // sec: number (inherited)
 private int nano;

 public boolean equals(Object o) {
 if (!(o instanceof NanoDuration)) {
 return false;

 NanoDuration n = (NanoDuration) o;

 return this.min === n.min &&
 this.sec === n.sec &&
 this.nano === n.nano;
 }

• Which property does this lack?
symmetry

Example: NanoDuration

Duration d = new Duration(2, 10);
NanoDuration n = new NanoDuration(2, 10, 300);

System.out.println(n.equals(d));

System.out.println(d.equals(n));

– NanoDuration is only equal to other NanoDurations

– Duration can be equal to a NanoDuration
if they have the same minutes and seconds

// false

// true!

Example: NanoDuration

class NanoDuration extends Duration {

 public boolean equals(Object o) {
 if (!(o instanceof Duration))
 return false;

 if (!(o instanceof NanoDuration)) {
 Duration d = (Duration) o;
 return this.min == d.min && this.sec == d.sec;
 } else {
 NanoDuration n = (NanoDuration) o;
 return this.min === d.min &&
 this.sec === d.sec && this.nano === d.nano;
 }

 };

• Fixes symmetry! all good now?
No! It lacks transitivity

Example: NanoDuration

NanoDuration n1 = new NanoDuration(2, 10, 300);
Duration d = new Duration(2, 10);
NanoDuration n2 = new NanoDuration(2, 10, 400);

System.out.println(n1.equals(d));
System.out.println(d.equals(n2));

System.out.println(n1.equals(n2));

– transitivity requires n1 to equal n2 (but it doesn’t)

// true

// true

// false!

Example: NanoDuration

• Can fix this instead as follows:
– have both agree that Duration ≠ NanoDuration

class Duration {
 …
 public boolean equals(Object o) {
 if (!(o instanceof Duration) ||
 (o instanceof NanoDuration))
 return false;

 Duration d = (Duration) o;

 return this.min == d.min && this.sec == d.sec;
 }

}

• This is arguably the most sensible answer…

Example: NanoDuration

• Should have spelled out the abstract states:

// Represents an amount of time in nanoseconds
class NanoDuration extends Duration {

 // RI: 0 <= sec < 60 and 0 <= nano < 10000
 // AF: obj = 60,000,000 * this.min +
 // 1,000,000 * this.sec +
 // this.nano
 private int nano;

}

• Abstract states of the two types are different
– time in seconds vs nanoseconds
– two different types of things should not be equal

Duration and NanoDuration

• We fixed it… but at what cost?

• Duration and NanoDuration are tightly coupled
– the two classes are tightly intertwined

• This usually happens with subclasses
– saw several different ways they are interdependent
– very hard to avoid coupling between subclasses

EJ 19: either design for subclassing or prohibit it

– better to simply not use it
find other ways to share code (e.g., shared utility functions etc.)

HashCode in Java

• Java has another method called hashCode

public int hashCode();

• Should override hashCode and equals together
– almost certainly a bug to only override equals

Java HashCode

• Java has another method called hashCode
– provided to make HashMap etc. work

public int hashCode();

• Its spec has the following requirements:

1. 	 a.hashCode()	cannot	change	value		unless	a	is	mutated

2. 	a.equals(b) means a.hashCode() == b.hashCode()
consistent with equals

self-consistency

when equals changes, so does hashCode

Equals & HashCode in Java

• Every class inherits a hashCode method

public class Object {
 public int hashCode() {
 // … consistent with reference equality …
 }

}

• When you override equals, also override hashCode
– almost certainly a bug to only override equals

public class MyClass {
 public int hashCode() {
 // … something consistent with new equality …
 }

}

