
Abstract Data Types (ADTs)
James Wilcox and Kevin Zatloukal

CSE 331

Recall: Properties of High-Quality Code

• Professionals are expected to write high-quality code

• Correctness is the most important part of quality
– users hate products that do not work properly

• Also includes the following
– easy to change
– easy to understand
– modular

abstraction provides
all three properties

Recall: Procedural Abstraction

• Hide the details of the function from the caller
– caller only needs to read the specification
– (“procedure” means function)

• Caller promises to pass valid inputs
– no promises on invalid inputs

• Implementer then promises to return correct outputs
– does not matter how

Definition of List Reversal

• Mathematical definition of rev(S)

	 	rev(nil) :=		nil	 	 	 	 	
	 	rev(x	::	L)	 :=		rev(L)	⧺	[x]

– note that rev uses concat (⧺) as a helper function

1 2 3

move 1 to end

reverse this too

included in the reference sheet
posted on the Topics page

Definition of List Reversal

• Mathematical definition of rev(S)

	 	rev(nil) :=		nil	 	 	 	 	
	 	rev(x	::	L)	 :=		rev(L)	⧺	[x]

– note that rev uses concat (⧺) as a helper function
– ex: rev(1	::	2	::	3	::	nil)	=	3	::	2	::	1	::	nil

rev(1	::	2	::	3	::	nil)
		=	rev(2	::	3	::	nil)	⧺	[1]	 	 	 	 def	of	rev
		=	rev(3	::	nil)	⧺	[2]	⧺	[1]	 	 	 	 def	of	rev
		=	rev(nil)	⧺	[3]	⧺	[2]	⧺	[1]	 	 	 def	of	rev
		=	[]	⧺	[3]	⧺	[2]	⧺	[1]	 	 	 	 	 def	of	rev
		=	…	=	[3,	2,	1]	 	 	 	 	 	 def	of	concat	(many	times)

what other tests should we do?

Procedural Abstraction Example

• Specification of rev is imperative:

// @return same numbers but in reverse order, i.e.
// rev(nil) := nil
// rev(x :: L) := rev(L) ++ [x]
public static List rev(List L) {
 return rev_acc(L, nil); // faster way
}

– code implements a different function
– second version is O(n)	instead of O(n2)
– need to use reasoning to check that these two match

can prove that rev_acc(L,	nil)	=	rev(L) for all L by structural induction

Performance Improvements

• Faster algorithm, rev-acc, for reversing a list
– rare to see this

• Most perf improvements change data structures
– different kind of abstraction barrier for data

• Let’s see an example…

Last Element of a List

last(x	::	nil)	 	 :=		x	
	 last(x	::	y	::	L)		 :=	last(y	::	L)

• Runs in ϴ(n) time
– walks down to the end of the list
– no faster way to do this on a list

• How could we change data to make this faster?
– we could cache the last element!

analogous idea: store references to front and back nodes

– can declare this in math as:

	 type	FastLastList	 :=	 {last:	ℤ,	list:	List}

– can do this in Java as well…

last is undefined on nil

Fast-Last List

class FastLastList {
 private final int last;
 private final List list;

 FastLastList(List list) {

 this.list = list;
 this.last = last(list);
 }

 public int getLast() {
 return this.last;
 }

 public List getList() {
 return this.list;
 }

}

lots of real-world performance
improvements look like this

in what way is this worse
than just using List?

— less memory efficient

Fast-Last List

class FastLastList {
 private final int last;
 private final List list;

 public int getLast() { … }

 public List getList() { … }
}

• How do we switch to this type?
– change every List into FastLastList
– not truly hiding data structure changes yet…

Fast-Last List

class FastLastList {
 private final int last;
 private final List list;

 public int getLast() { … }

 public List getList() { … }
}

• What if we also want the second-to-last element?
– this is ϴ(n) to retrieve it
– could cache the second to last element also

• What if we just want the items at the end of the list?
– store it in reverse order!

Reversed List

private List L; // regular order
private List R; // reversed

/** @param L a list. Must be in *reverse* order */
public static void f(List L) { … }

• Why is this a terrible idea?
– the type checker will not catch mistakes

humans make mistakes. count on it

– will unit tests catch this?
might only show up in integration tests

– what will the debugging be like?

Fast-Last List

class FastBackList {
 private final List revList;

 public int getLast() {
 return this.revList.hd;
 }

 public List getList() {
 return rev(this.revList);
 }
}

• How do we switch to this type?
– change every FastLastList into FastBackList
– not good that every data structure change is a code change

How could we avoid having
a linear-time getList?

— keep list and revList

— time / space tradeoff

Fast-Last List

class FastLastList {
 private final int last;
 private final List list;
 …

}

class FastBackList {
 private final Last revList;
 …

}

• How can we make data structure changes without
having to change all the clients every time?
– use a Java interface

Fast List

interface FastList {
 int getLast();
 List getList();
}

class FastLastList implements FastList {
 private final int last;
 private final List list;
 …
}

class FastBackList implements FastList {
 private final List revList;
 …
}

Fast List

interface FastList {
 int getLast();
 List getList();
}

• Clients should use only FastList in declarations
– only usen FastLastList after "new"

• Standard style in Java
– e.g., create an ArrayList but store it as List

Interfaces contain only
operations (methods)
not data structures

Example 1: Fast List

interface FastList {
 int getLast();
 List getList();
}

• Interface provides an abstraction barrier
– hides the details of data structures from the client

Interfaces contain only
operations (methods)
not data structures

client implementer

abstraction barrier

interface

Data Abstraction

• Give clients only operations, not data
– operations are the spec, data is hidden

• We call this an Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s

won the Turing award in 2008

– fundamental concept in computer science
built into Java's public and private

– data abstraction via procedural abstraction

• See recent interview with Computing History Museum

Example 2: Point in 2D Space

// Represents an (x, y) point in 2D space.
class Point {
 private double x;
 private double y;

 public double getX() { return this.x; }
 public double getY() { return this.y; }

 public double getR() {
 return Math.sqrt(x*x + y*y);
 }

 public double getTheta() {
 return Math.atan2(y, x);
 }

What if these are too slow?
— store polar coordinates

— time / space tradeoff

How do we write this as an ADT?

Example 2: Point in 2D Space

// Represents an (x, y) point in 2D space.
interface Point {
 double getX();
 double getY();
 double getR();
 double getTheta();
}

class SimplePoint implements Point {
 private double x, y;
}

class PolarPoint implements Point {
 private double x, y;
 private double r, theta;
}

What if we want to use PolarPoint
for users with lots of memory and
SimplePoint for users with little?

— need code to decide which to make

Example 2: Point in 2D Space

/** Creates a point at the given coordinates. */
public static Point makePoint(double x, double y) {
 if (Runtime.getRuntime().totalMemory() > MIN_MEM) {
 return new PolarPoint(x, y);
 } else {
 return new SimplePoint(x, y);
 }

}

• This is a "factory function"
– an example of a design pattern

more on these later…

– Java SDK includes many, e.g., Arrays.asList(..)

Types of Operations

interface Point {
 public double getX();
 public double getY();
 public double getR();
 public double getTheta();
 …

}

• Operations usually fall into a few classes:
– observers/getters: return properties of an object
– mutators: change properties of the object
– producers: create new objects from an existing one

Observers/Getters on Point

public double getX();
public double getY();
public double getR();
public double getTheta();

/** Return distance from this point to given one. */
public double distTo(Point p);

• Observers/Getters return information about the
object, but do not change it in any way

Mutators on Point

/** Move the point by dx in x coord and dy in y */
public void shift(double dx, double dy);

/** Move by rotating about the origin by theta. */
public void rotate(double theta);

• Mutators change the properties of the object,
but usually do not return anything important
– also sometimes called “setters”

Producers on Point

/** Move the point by dx in x coord and dy in y */
public Point shift(double dx, double dy);

/** Move by rotating about the origin by theta. */
public Point rotate(double theta);

• Producers create new objects
– new object is returned
– they do not change the existing object

Mutable vs Immutable ADTs

 Immutable Mutable
observers ✅ ✅

mutators ❌ ✅
producers ✅ ❌ (usually not)

• Sensible to pick one or the other
– would be dangerous to provide both

will see why later on

• We will stick to immutable ADTs for now
– mutation makes reasoning & debugging harder
– EJ 17: minimize mutability in classes

Recall: Fast List

interface FastList {
 int getLast();
 List getList();
}

• What kind of operations are these?
– both are observers

• What would be examples of useful producers?

Producers on FastList

/** Returns the list with x added at the front. */
public FastList cons(int x);

• What factory functions should we provide?
– what is the minimum we could get away with?

Creator of FastLists

/** @return nil. */
public static FastList emptyList() {
 return new FastBackList(null);
}

• How could we make this more memory efficient?
– no need to create a new object every time

Creator of FastLists

public static FastList EMPTY_LIST =
 new FastBackList(null);

/** @return nil. */
public static FastList emptyList() {
 return EMPTY_LIST;
}

• This is the "singleton" design pattern
– note: this is only possible since FastList is immutable!

we will see why later on…

Producers on FastList

/** Returns the list with x added at the front. */
public FastList cons(int x);

/**
 * Returns the list containing the elements of
 * this list followed by those of R.
 */
public FastList concat(FastList R);

• How do we formalize this?
– everything above is English

there is possibility for confusion

Specifications for ADTs

Specifications for ADTs

• Run into problems when we try to write specs
– for example, what goes after @return?

don’t want to say returns the .list field
we want to hide those details from clients

interface FastList {
 /**
 * Returns the last element of the list.
 * @return ??
 */
 int getLast();
 };

• Need some terminology to clear up confusion

ADT Terminology

New terminology for specifying ADTs

 Concrete State
actual fields of the record and the data stored in them
Last example: int last, List list

 Abstract State
how clients should think about the object
Last example: List (i.e., nil or cons)

• We’ve had different abstract and concrete types all along…
– in our math, List is an inductive type (abstract)
– in our code, List is a record (concrete)

ADT Terminology

New terminology for specifying ADTs

 Concrete State
actual fields of the record and the data stored in them
Last example: int last, List list

 Abstract State
how clients should think about the object
Last example: List (i.e., nil or cons)

• Term “object” (or “obj”) will refer to abstract state
– “object” means mathematical object
– “obj” is the mathematical value that the record represents

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {
 /**
 * Returns the last element of the list (O(1) time)
 * @requires obj != nil
 * @return last(obj)
 */
 int getLast();

• “obj” refers to the abstract state (the list, in this case)
– actual state will be a record with fields last and list

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {
 …

 /**
 * Returns a new list with x in front of this list.
 * @return x :: obj
 */
 FastList cons(int x);

• Producer method: makes a new list for you
– “obj” above is a list, so x	::	obj makes sense in math

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {
 …

 /**
 * Returns a new list with x in front of this list.
 * @return x :: obj
 */
 FastList cons(int x);

• Specification does not talk about fields, just “obj”
– fields are hidden from clients

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {
 …

 /**
 * Returns the object as a regular list of items.
 * @return ??
 */
 List getList();

• How do we specify this?

Specifying FastList

/**
 * A list of integers that can retrieve the last
 * element in O(1) time.
 */
interface FastList {
 …

 /**
 * Returns the object as a regular list of items.
 * @return obj
 */
 List getList();

• In math, this function does nothing (“@return obj”)
– two different concrete representations of the same idea
– details of the representations are hidden from clients

Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return x */
 double getX();

 /** @return y */
 double getY();

• Abstract state is a pair (x,	y)
– i.e., we have (x,	y)	:=	obj
– so, we can refer to "x" and "y"

Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return (x^2 + y^2)^(1/2) */
 double getR();

 /** @return arctan(y/x) */
 double getTheta();

• Imperative specifications
– code may or may not actually do these calculations
– PolarPoint just returns the value in a field

Specifying Point

/** Represents an (x, y) point in 2D space. */
interface Point {

 /** @return (x + dx, y + dy) */
 Point shiftBy(double dx, double dy);

• Describe the abstract state of what is returned
– actual value returned is a Point of some variety

Recall: ADTs

• Abstraction over data
– hide the details of the data representation
– only give users a set of operations (the interface)

data abstraction via procedural abstraction

• Interface can make clever data structures possible

• Some commonly used ADTs:
– stack: add & remove from one end
– queue: add to one end, remove from other
– set: add, remove, & check if contained in list
– map: add, remove, & get value for (key, value) pair

Immutable Queue

• A queue is a list that can only be changed two ways:
– add elements to the front
– remove elements from the back

// List that only supports adding to the front and
// removing from the end
interface NumberQueue {

 // @return len(obj)
 int size();

 // @return x :: obj
 NumberQueue enqueue(int x);

 // @requires len(obj) > 0
 // @return (x, Q) with obj = Q ++ [x]
 DequeueParts dequeue();

}

observer

producer

producer

class DequeueParts {
 public final NumberQueue Q;
 public final int x;
}

Documenting an
ADT Implementation

Documenting an ADT Implementation

• Last lecture, we saw how to write an ADT spec

• Key idea is the “abstract state”
– simple definition of the object (easier to think about)
– clients use that to reason about calls to this code

• Write specifications in terms of the abstract state
– describe the return value in terms of “obj”

• We also need to reason about ADT implementation
– for this, we do want to talk about fields
– fields are hidden from clients, but visible to implementers

Documenting an ADT Implementation

• We also need to document the ADT implementation
– for this, we need two new tools

 Abstraction Function
defines what abstract state the field values currently represent

• Maps the field values to the object they represent
– object is math, so this is a mathematical function

there is no such function in the code — just a tool for reasoning

– will usually write this as an equation
obj	=	…	 	 right-hand side uses the fields

Documenting the FastList ADT

class FastLastList implements FastList {
 // AF: obj = this.list
 private final int last;
 private final List list;
 …
}

• Abstraction Function (AF) gives the abstract state
– obj = abstract state
– this = concrete state (record with fields .last and .list)
– AF relates abstract state to the current concrete state

okay that “last” is not involved here

– specifications only talk about “obj”, not “this”
“this” will appear in our reasoning

Documenting an ADT Implementation

• We also need to document the ADT implementation
– for this, we need two new tools

 Abstraction Function
defines what abstract state the field values currently represent
only needs to be defined when RI is true

 Representation Invariants (RI)
facts about the field values that should always be true
defines what field values are allowed
AF only needs to apply when RI is true

Documenting the FastLastList ADT

class FastLastList implements FastList {
 // RI: this.last = last(this.list)
 // AF: obj = this.list
 private final int last;
 private final List list;
 …

}

• Representation Invariant (RI) holds info about this.last
– fields cannot have just any number and list of numbers
– they must fit together by satisfying RI

last must be the last number in the list stored

Documenting the FastBackList ADT

class FastBackList implements FastList {

 private final List revList;
 …
}

• How can we specify this?
– what is the AF and RI?

Documenting the FastBackList ADT

class FastBackList implements FastList {

 // AF: obj = rev(this.revList)
 private final List revList;
 …
}

• No need for an RI
– any value for revList is fine

Documenting the FastBackList ADT

class FastBackList implements FastList {

 private final List list;
 private final List revList;
 …

}

• How can we specify this version?
– what is the AF and RI?

Documenting the FastBackList ADT

class FastBackList implements FastList {
 // RI: this.revList = rev(this.list)
 // AF: obj = this.list
 private final List list;
 private final List revList;
 …

}

• Complexity moves from the AF to the RI

Documenting the PolarPoint ADT

/** Represents an (x, y) point in 2D space. */
class PolarPoint implements Point {

 private final double r, theta;
 …

}

• How can we specify this version of Point?
– what is the AF and RI?

Documenting the PolarPoint ADT

/** Represents an (x, y) point in 2D space. */
class PolarPoint implements Point {
 // RI: r >= 0
 // AF: (r cos(theta), r sin(theta))
 private final double r, theta;
 …

}

• No constraints on theta
– could restrict it by –π < θ ≤ π (for example)

Documenting the PolarPoint ADT

/** Represents an (x, y) point in 2D space. */
class PolarPoint implements Point {

 private final double x, y;
 private final double r, theta;
 …

}

• How can we specify this version of Point?
– what is the AF and RI?

Documenting the PolarPoint ADT

/** Represents an (x, y) point in 2D space. */
class PolarPoint implements Point {
 // RI: r = sqrt(x^2 + y^2) and theta = atan2(y, x)
 // AF: obj = (x, y)
 private final double x, y;
 private final double r, theta;
 …

}

• Complexity moves from AF to RI

Recall: Immutable Queue

• A queue is a list that can only be changed two ways:
– add elements to the front
– remove elements from the back

// List that only supports adding to the front and
// removing from the end
interface NumberQueue {

 // @return len(obj)
 int size();

 // @return [x] :: obj
 NumberQueue enqueue(int x);

 // @requires len(obj) > 0
 // @return (x, Q) with obj = Q ++ [x]
 DequeueParts dequeue();

}

class DequeueParts {
 public final NumberQueue Q;
 public final int x;
}

Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

 // AF: obj = this.front ++ rev(this.back)
 private final List front;
 private final List back; // in reverse order

• Back part stored in reverse order
– head of front is the first element
– head of back is the last element

1 2 nil

4 3 nil

this.front	=

this.back	=

1 2

4 3nil

obj	=

Implementing a Queue with Two Lists

• How do we enqueue (add at the front)?
– remember that this is a producer

• How do we dequeue (remove from end)?
– when is this not easy?
– can we make this problem go away?

1 2 nil

4 3 nil

this.front	=

this.back	=

1 2

4 3nil

obj	=

Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

 // AF: obj = this.front ++ rev(this.back)
 // RI: if this.back = nil, then this.front = nil
 private final List front;
 private final List back; // in reverse order

• If back is nil, then the queue is empty
– if back	=	nil, then front	=	nil (by RI) and thus

	 obj	 =
	 	
	 	

Implementing a Queue with Two Lists

// Implements a queue using two lists.
class ListPairQueue implements NumberQueue {

 // AF: obj = this.front ++ rev(this.back)
 // RI: if this.back = nil, then this.front = nil
 private final List front;
 private final List back; // in reverse order

• If back is nil, then the queue is empty
– if back	=	nil, then front	=	nil (by RI) and thus

	 obj	 =	nil	⧺	rev(nil)	 	 	 	 	 by AF
	 	 =	rev(nil)	 	 	 	 	 	 def of concat
	 	 =	nil	 	 	 	 	 	 	 def of rev

– if the queue is not empty, then back is not nil
(311 alert: this is the contrapositive)

Implementing a Queue with Two Lists

• How do we dequeue (remove from end)?
– What’s different with our new RI?

• Easier to observe (find the last element), but
harder to produce (the new queue)
– i.e., easier to read but harder to write

1 2 nil

4 3 nil

this.front	=

this.back	=

1 2

4 3nil

obj	=

