CSE 331

Reasoning About Functional Code

James Wilcox and Kevin Zatloukal

Recall: Code Without Mutation

* Our math notation includes only...
— expressions
— conditionals (pattern matching & side conditions)
— recursion

* This is all we need, mathematically
— can write anything computable with just these

e Can do these in Java as well...

Java Code Without Mutation

* Code without mutation consists of...
— straight-line code variable declarations and return
— conditionals if statements
— recursion

 Code that only uses these properties is "functional”
— we will limit ourselves to functional code initially

Can translate any of our math functions into this

 Data is not so easy
— compound types need to be faked with classes

Inductive Data Types in Java

* Java does not natively support these data types
other languages support these as well as tuples and records

 (Can fake them with classes, e.g.:

ublic class List { . . .
F final int hd. type List := nil | cons(hd: Z, tl: List)

final List tl;
public static final List nil = null;

public static List cons(int hd, List tl) {
return new List (hd, tl);

}

private List (int hd, List tl) { cons (1, cons (2, nil));

this.hd = hd;
this.tl = tl1; 1 2

Recall: Software Development Process

1. Specification

2. Plan Generation

3. Coding
Implementation

4. Correctness

— an imperative spec comes with a plan
can translate this directly into Java code

— a declarative spec does not

Software Implementation

Coding 1 » Type Checking

€rrors

» Reasoning

failures

» Testing

Debugging

Beta

Users

A

5

4

All Users

 Debugging is the search from failure to bug
— harder the more code that must be searched

— easiest possible case is a unit test failure
— time required is random with a long tail

Software Implementation

Coding L » Type Checking

€rrors

» Reasoning

failures

» Testing

Debugging

Beta Users

5

Y

All Users

* Three techniques used to check correcthess

— each removes ~2/3" of the bugs present

— but each tends to find different bugs
— need all three techniques to get 99+% assurance

Software Implementation

Coding

Type Checking

€rrors

» Reasoning

failures

» Testing

Debugging

Beta Users

5

Y

All Users

* Three techniques used to check correctness
— type checking is familiar (and more coming later)

— already discussed testing

— focus now on reasoning

Reasoning

 “Thinking through” what the code does on all inputs
— ensuring what it does is correct in all cases

* Type checking does not do this
— only checks that return values have the right type
— e.g., ensures that an int but not that itis 1

* Testing does not do this
— only verifies a correct output on some inputs

Reasoning

 “Thinking through” what the code does on all inputs
— neither testing nor type checking can do this

* Can be done formally or informally

— most professionals reason informally

— we will start with formal reasoning and move to informal
formal reasoning is a steppingstone to informal reasoning (same core ideas)
formal reasoning still needed for the hardest problems

 Definition of correctness comes from the
specification...

Correctnhess Requires a Specification

Specification contains two sets of facts

Precondition:

facts we are promised about the inputs

Postcondition:

facts we are required to ensure for the output

Correctness (satisfying the spec):

for every input satisfying the precondition,
the output will satisfy the postcondition

Facts

« Starting point for reasoning is “facts” about the code

— things we know to be true about the variables
these hold for all inputs (no matter what value the variable has)

— typically, “=" or “<”

// @param n a natural number
int f(int n) {

final int m = 2 * n;

find facts by reading along path

from top to return statement
return (m + 1) * (m — 1);

s

* At the return statement, we know these facts:
—n=0

note: these hold for all valid inputs
— m=2n

Facts

« Starting point for reasoning is “facts” about the code

— things we know to be true about the variables
these hold for all inputs (no matter what value the variable has)

— typically, “=" or “<”
// @param n a natural number
int f(int n) {
final int m = 2 * n;
return (m + 1) * (m - 1);

s

* No need to include the fact that n is an integer (n : Z)

— that is true, but the type checker takes care of that
— no need to repeat reasoning done by the type checker

Finding Facts at a Return Statement

 Consider this code:

// Inputs a and b can be any integers.
// Returns a non-negative integer.
int f(int a, int b) {
final List L = cons(a, cons(b, nil));
if (a >>= 0 && b >= 0)
return sum (L) ;

find facts by reading along path
from top to return statement

facts are math statements about the code

* Known facts include “a > 07, “b = 07, and “L = cons(...)"
* Remains to prove that “sum(L) = 0”

Implications

 We can use the facts we know to prove more facts

— if we can prove R using facts P and Q,
we say that R “follows from” or “is implied by” P and Q

— proving this fact is proving an “implication”

* We will see how to do this shortly...

will be familiar to those who have taken 311

Checking Correctness of Functional Code

» Steps for checking correctness of functional code:
1. Collect facts at each return statement
2. Ensure those facts imply each fact of the postcondition

* Checking correctness requires proving implications
— need to prove facts about the return values
— return values must satisfy the facts of the postcondition

* If the known facts do not imply the postcondition,
then the code is wrong

— some valid input does not satisfy the postcondition
the code will be correct in 99% of our examples,
but this is the reason why we do reasoning: to find mistakes

Collecting Facts

 Saw how to collect facts in code consisting of
— "final" variable declarations
— "if" statements
— collect facts by reading along path from top to return

* Those elements cover all code without mutation
— covers everything describable by our math notation
— we can calculate interesting values with recursion

 Will need more tools to handle code with mutation...

Mutation Makes Reasoning Harder

no mutation full coverage type checker calculation
_) HW2

induction
local variable mutation Floyd logic HW4
heap state mutation rep invariants

“

array mutation for-any facts HWS

Correctness with No Mutation

* Proving implications is the core step of reasoning
— other techniques output implications for us to prove

* Facts are written in our math notation
— we will use math tools to prove implications

Core technique is "proof by calculation”

Other techniques we will need:
— proof by cases
— structural induction

Proof by Calculation

Proof by Calculation

* Proves an implication
— fact to be shown is an equation or inequality

 Uses known facts and definitions
— latter includes, e.g., the fact that len(nil) =0

Example Proof by Calculation

* Givenx=yandz<10,provethatx+z<y+ 10
— show the third fact follows from the first two

e Start from the left side of the inequality to be proved

X+zZ =y+z <y+10

| J

I
| J

Y
Y sincez<10

since x =

All together, this tellsus that x+z < y + 10

Example Proof by Calculation

* Givenx=yandz<10,provethatx+z<y+ 10
— show the third fact follows from the first two

e Start from the left side of the inequality to be proved

X+z
=y+z sincex =y
<y+10 since z < 10

— easier to read when split across lines

— “calculation block”, includes explanations in right column
proof by calculation means using a calculation block

— “=" or “<” relates that line to the previous line

Calculation Blocks

 Chain of “=" shows first = last

— proves thata=d
— all 4 of these are the same number

Calculation Blocks

e Chain of “=" and “<” shows first < last

X+ 7z
=y+z sincex =y
<y+10 since z < 10
=y+3+7
<w+7 sincey+3<w

— each number is equal or strictly larger that previous
last number is equal or strictly larger than the first number

— analogous for “2”

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
int f(int x, int y) => {

return x + y;

s

* Known facts “x > 1" and “y > 1"

* Correct if the return value is a positive integer

X+y

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
int f(int x, int y) => {

return x + y;

s

* Correct if the return value is a positive integer

X+y
>x+1 sincey > 1
>1+1 sincex>1
=2
>1

— calculation shows thatx +y =1

Using Calculation to Prove Correctness

// Inputs x and y with x >= 9 and y >= -8
// Returns a positive integer.
int f(int x, int y) => {

return x + y;

s

* Known facts “x = 9” and “y = -8”

* Correct if the return value is a positive integer

X+y

Using Calculation to Prove Correctness

// Inputs x and y with x >= 9 and y >= -8
// Returns a positive integer.
int f(int x, int y) => {

return x + y;

s

* Known facts “x = 9” and “y = -8”

* Correct if the return value is a positive integer

X+y
> X+ -8 since y = -8
>9-8 sincex>9

=1

Using Calculation to Prove Correctness

// Inputs x and y with x > 8 and y > -9
// Returns a positive integer.
int f(int x, int y) => {

return x + y;

s

* Known facts “x > 8" and “y > -9”

* Correct if the return value is a positive integer

X+y
>x+-9 sincey > -9
>8-9 sincex > 8
=-1

warning: avoid using “>” (or “<“) multiple times in a calculation block

Using Calculation to Prove Correctness

// Inputs x and y with x > 3 and y > 4

// Returns an integer that is 10 or larger.

int f(int x, int y) => {
return x + y;

s

* Known facts “x > 4" and “y = 5"

* Correct if the return value is 10 or larger

X+y

Using Calculation to Prove Correctness

// Inputs x and y with x > 3 and y > 4
// Returns an integer that is 10 or larger.
int f(int x, int y) => {

return x + y;

s

* Known facts “x > 4" and “y = 5"

* Correct if the return value is 10 or larger

X+y
>x+5 sincey =5
>4 +5 since x = 4

proof doesn’t work because the code is wrong!

Using Definitions in Calculations

* Most useful with function calls
— cite the definition of the function to get the return value

* For example:

sum(nil) =0
sum(x:: L) := x+ sum(L)

e (Can cite facts such as
— sum(nil) =0

— sum(a :: b ::nil) =a + sum(b :: nil)

second case of definition with x =a and L. = b :: nil

Recall: Finding Facts at a Return Statement

 Consider this code

// Inputs a and b must be integers.

// Returns a non-negative integer.

int f(int a, int b) {
final List L = cons(a, cons(b, nil));
if (a >>= 0 && b >= 0)

return sum (L) ;

find facts by reading along path
from top to return statement

* Known facts include “a = 07, “b = 0”7, and “L = cons(...)”
* Must prove that sum(L) = 0

Using Definitions in Calculations

sum(nil) =0
sum(x:: L) := x+ sum(L)

* Know“a>0",“b>0",and “L=a:: b:nil”

* Prove that sum(L) =0

sum(L)

Using Definitions in Calculations

0
X + sum(L)

sum(nil)

sum(x :: L)
* Know“a>=>0"“b=0",and “L=a::b:nil”

* Prove that sum(L) =0

sum(L)
= sum(a :: b :: nil) since L=a:: b:: nil
=a + sum(b :: nil) def of sum
=a+ b + sum(nil) def of sum
=a+b def of sum
>0+b sincea =0

>0 sinceb >0

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
int f(int x, int y) {

if (y < 0) |
return x + y;
} else ({
return x - 1;

}
s

* Known fact in then (top) branch: “y < -1"

X+y

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
int f(int x, int y) {
if (y < 0) |
return x + y;
} else {
return x - 1;
}
i

* Known fact in then (top) branch: “y < -1"

X+y
<x+-1 sincey < -1
<x+0 since-1<0
=X

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
int f(int x, int y) {
if (y < 0) |
return x + y;
} else {
return x - 1;
}
i

Known fact in else (bottom) branch: “y = 0”

x-1

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
int f(int x, int y) {

if (y < 0) |
return x + y;
} else ({
return x - 1;

}
s

* Known fact in else (bottom) branch: “y = 0”

x-1
<x+0 since-1<0
=X

Proving Correctness with Multiple Claims

* Need to check the claim from the spec at each return

* |If spec claims multiple facts, then
we must prove that each of them holds

// Inputs x and y are integers with x <y -1
// Returns a number less than y and greater than x.
int f(int x, int y) { .. };

— multiple claims to prove: x<randr<y

"

where “r” is the return value

— requires two calculation blocks

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r > a and r > b
int max (int a, int b) {
if (a >= b) {

return a;
declarative spec of max

} else {
return b;

}
Y

* Three different facts to prove at each return

 Two known facts in each branch (return value is “r”):
— then branch: a=b and r=a

— else branch: a<band r=b
— prove an "or" holds by proving one of the two options holds

Proof By Cases

Proof By Cases

 Sometimes necessary split a proof into cases
— fact may be hard to prove for all values at once

 Example: can't prove it for all x at once,
but can prove itforx=0andx<0

— will see an example next

* If we can prove it in those two cases, it holds for all x

— follows since the cases are exhaustive
(don’t need to be exclusive in this case)

— can pick any cases we want, not just cases in the code

Example Proof By Cases

f:Z->17Z
f(m) :=2m+1 ifm=>=0
f(m) :=0 ifm<O0

* Want to prove that f{(m) > m

* Doesn't seem possible as is
— can't even apply the definition of f
— needtoknowifm<Oorm=0

e Split our analysis into these two separate cases...

Proof By Cases

f(m) :=2m+1 ifm=>=0
f(m) :=0 ifm<O0

* Prove that f(m) > m

Casem = 0:

f(m) =

Proof By Cases

f(m) :=2m+1
f(m):=0

* Prove that f(m) > m

Casem = 0:

f(m) =2m + 1
=m+m+1
>m+1
> m

ifm=0
ifm<O0

side condition requires a "since"

def of f (since m = 0)

sincem >0
sincel >0

Proof By Cases

f(m) :=2m+1 ifm=>=0
f(m) :=0 ifm<O0

* Prove that f(m) > m

Casem = 0:
flm) =...>m
Casem < 0:
f(lm) =0 def of f (since m < 0)
>m sincem <0

Since these two cases are exhaustive, f(m) > m holds in general.

Recall: Correctness with No Mutation

* Proving implications is the core step of reasoning
— other techniques output implications for us to prove

* Core technique is "proof by calculation”
— other techniques break down into calculations also

* Other techniques we will need:
— proof by cases
— structural induction

Structural Induction

Proof by Calculation

* Our proofs so far have used fixed-length lists
— e.g,sum(a::b:nil) >0

 Would like to prove facts about any length list L

* For example...

Example: Repeating List Elements

* Consider the following function:

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Produces a list where every element is repeated twice

echo(1 :: 2 :: nil)
=1:1:echo(2:: nil) def of echo
=1:1:2:2: echo(nil) def of echo
=1:1:2:2::nil def of echo

Example: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Suppose we have the following code:

final int m = len(S); // S is some List
final List R = echo(S);

return 2*m; // = len(echo(S))

— spec says to return len(echo(S)) but code returns 2 len(S)

* Need to prove that len(echo(S)) = 2 len(S)

Proof by Calculation

* Our proofs so far have used fixed-length lists
— e.g,sum(a::b:nil) >0

 Would like to prove facts about any length list L

* Need more tools for this...
— structural recursion calculates on inductive types

— structural induction reasons about inductive types
both tools are specific to inductive types

Structural Induction

Let P(S) be the claim “len(echo(S)) = 2 len(S)”

To prove P(S) holds for any list S, prove two implications

Base Case: prove P(nil)
— use any known facts and definitions

Inductive Step: prove P(x:: L)
— X and L are variables
— use any known facts and definitions plus one more fact...

— make use of the fact that L is also a List

Structural Induction

To prove P(S) holds for any list S, prove two implications

Base Case: prove P(nil)
— use any known facts and definitions

Inductive Hypothesis: assume P(L) is true
— use this in the inductive step, but not anywhere else

Inductive Step: prove P(x:: L)
— use known facts and definitions and Inductive Hypothesis

Why This Works

With Structural Induction, we prove two facts

P(nil) len(echo(nil)) = 2 len(nil)
P(x: L) len(echo(x:: L)) =2len(x:: L)
(second assuming len(echo(L)) = 2 len(L))

Why is this enough to prove P(S) for any S : List?

Why This Works

Build up an object using constructors:

nil first constructor

2 :: nil second constructor

1::2 il second constructor
1 2 nil

L J
|

nil already exists when building 2 :: nil

| J
1

2 :: nil already exists when building 1 :: 2 :: nil

Why This Works

Build up a proof the same way we built up the object

P(nil) len(echo(nil)) = 2 len(nil)
P(x: L) len(echo(x:: L)) =2len(x:: L)
(second assuming len(echo(L)) = 2 len(L))

1 2 nil
L'_l
P(nil)

L J
|

P(nil) already proven when proving P(2 :: nil)

| J
|

P(2 :: nil) already proven when proving P(1 :: 2 :: nil)

Example: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

Need to prove that len(echo(nil)) = 2 len(nil)

len(echo(nil))

= 2 len(nil)
len(nil) =0
len(x:: L) := 1+ len(L)

Example: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

len(echo(nil)) = len(nil) def of echo
=0 def of len
=2-0

=2]en(ni]) def of len

Example: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Step (x :: L):

Need to prove that len(echo(x:: L)) = 2 len(x :: L)

Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)

Example: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):
len(echo(x:: L))

len(nil) =0

len(x::L) :=1+len(L) =2len(x L)

Example: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Prove that len(echo(S)) = 2 len(S) for any S : List

Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)

Inductive Step (x :: L):

len(echo(x:: L)) =len(x: x::echo(L)) def of echo
=1+ len(x :: echo(L)) def of len
= 2 + len(echo(L)) def of len
=2+ 2len(L) Ind. Hyp.
=2(1 +len(L))
=2len(x:: L) def of len
len(nil) =0

len(x:: L) := 1+ len(L)

Structural Induction in General

* General case: assume P holds for constructor arsuments

typeT .= A | Bx:Z) | C(y:Z,t:T) |[D(z:Z,u:T,v:T)

* To prove P(t) for any t, we need to prove:
— P(A)
— P(B(x)) forany x: Z
— P(C(y,t)) foranyy:Zand t: T assuming P(t) is true
— P(D(z,u,v)) foranyz:Zandu,v:T assuming P(u) and P(v)

* These four facts are enough to prove P(t) for any t
— for each constructor, have proof that it produces an object satisfying P

Structural Induction in General

* Each inductive type has its own form of induction
— special way to reason about that type

 Lists are defined like this:

type List := nil | cons(x:Z, L : List)

* To prove P(S) for any list S, we need to prove:
— P(nil)
— P(x::L)forany x:Zand L : List assuming P(L) is true

Example 2: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Suppose we have the following code:

final int y = sum(S); // S is some List
final List R = echo(S);

return 2*y; // = sum(echo(S))

— spec says to return sum(echo(S)) but code returns 2 sum(S)

* Need to prove that sum(echo(S)) = 2 sum(S)

Example 2: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

sum(echo(nil)) =

= 2 sum(nil)

sum(nil) =0
sum(x:: L) := x+sum(L)

Example 2: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

sum(echo(nil)) = sum(nil) def of echo
=0 def of sum
=2-0
= 2 sum(nil) def of sum

Inductive Step (x :: L):

Need to prove that sum(echo(x:: L)) =2 sum(x:: L)
Get to assume claim holds for L, i.e., that sum(echo(L)) = 2 sum(L)

Example 2: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

sum(echo(x:: L)) =

=2 sum(x: L)
sum(nil) =0
sum(x:: L) := x+sum(L)

Example 2: Repeating List Elements

echo(nil) :=nil
echo(x::L) :=x:ux:echo(L)

* Prove that sum(echo(S)) = 2 sum(S) for any S : List

Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)

Inductive Step (x :: L):

sum(echo(x:: L)) =sum(x: x:: echo(L)) def of echo
= x + sum(x :: echo(L)) def of sum
= 2x + sum(echo(L)) def of sum
= 2x + 2 sum(L) Ind. Hyp.
= 2(x + sum(L))

=2 sum(x:: L) def of sum

Recall: Concatenating Two Lists

* Mathematical definition of concat(§, R)

concat(nil, R) = R important operation
concat(x :: L, R) := x:: concat(L, R) abbreviated as "+4"

 Puts all the elements of L before those of R

concat(1 :: 2 ::nil, 3 ::4 ::nil)
= 1:: concat(2 :: nil, 3 :: 4 :: nil) def of concat
= 1:: 2 :: concat(nil, 3 :: 4 :: nil) def of concat
=1:2:3:4::nil def of concat

Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L, R) := x::concat(L, R))

* Suppose we have the following code:

final int m = len(S); // S is some List
final int n = len(R); // R is some List

return m + n; // = len(concat(S, R))

— spec returns len(concat(S, R)) but code returns len(S) + len(R)

* Need to prove that len(concat(S, R)) =len(S) + len(R)

Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L, R) := x::concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

— prove by induction on S
— prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

len(concat(nil, R)) =

= len(nil) + len(R)

Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L, R) := x::concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

— prove by induction on S
— prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

len(concat(nil, R)) = len(R) def of concat
=0 + len(R)
= len(nil) + len(R) def of len

Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L, R) := x::concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Step (x :: L):

Need to prove that
len(concat(x :: L, R)) =len(x:: L) + len(R)
Get to assume claim holds for L, i.e., that

len(concat(L, R)) = len(L) + len(R)

Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L, R) := x::concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

len(concat(x:: L, R)) =

= len(x:: L) + len(R)

Example 3: Length of Concatenated Lists

concat(nil, R) = R
concat(x:: L, R) := x::concat(L, R))

* Prove that len(concat(S, R)) =len(S) + len(R)

Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (x :: L):

len(concat(x:: L, R)) =len(x:: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) Ind. Hyp.
= len(x:: L) + len(R) def of len

Comparing Reasoning vs Testing

static List concat(List S, List R) {
if (S == nil) {
return R;
} else {
return cons (S.hd, concat(S.tl, R));

}
} s

* Testing: 3 cases
— loop coverage requires O, 1, and many recursive calls
— does not guarantee the code works on all inputs

* Reasoning: 2 calculations

