
Reasoning About Functional Code
James Wilcox and Kevin Zatloukal

CSE 331

Recall: Code Without Mutation

• Our math notation includes only…
– expressions
– conditionals (pattern matching & side conditions)
– recursion

• This is all we need, mathematically
– can write anything computable with just these

• Can do these in Java as well…

Java Code Without Mutation

• Code without mutation consists of…
– straight-line code variable declarations and return

– conditionals if statements
– recursion

• Code that only uses these properties is "functional"
– we will limit ourselves to functional code initially

• Can translate any of our math functions into this

• Data is not so easy
– compound types need to be faked with classes

Inductive Data Types in Java

• Java does not natively support these data types
other languages support these as well as tuples and records

• Can fake them with classes, e.g.:

public class List {
 final int hd;
 final List tl;

 public static final List nil = null;

 public static List cons(int hd, List tl) {
 return new List(hd, tl);
 }

 private List(int hd, List tl) {
 this.hd = hd;
 this.tl = tl;
 }
}

type	List		:=		nil		|		cons(hd	:	ℤ,		tl	:	List)

cons(1, cons(2, nil));

1 2

Recall: Software Development Process

Design

Implementation

1. Specification what

2. Plan Generation how

3. Coding

4. Correctness

– an imperative spec comes with a plan
can translate this directly into Java code

– a declarative spec does not

Software Implementation

• Debugging is the search from failure to bug
– harder the more code that must be searched
– easiest possible case is a unit test failure
– time required is random with a long tail

Software Implementation

• Three techniques used to check correctness
– each removes ~2/3rd of the bugs present
– but each tends to find different bugs
– need all three techniques to get 99+% assurance

Software Implementation

• Three techniques used to check correctness
– type checking is familiar (and more coming later)
– already discussed testing
– focus now on reasoning

Reasoning

• “Thinking through” what the code does on all inputs
– ensuring what it does is correct in all cases

• Type checking does not do this
– only checks that return values have the right type
– e.g., ensures that an int but not that it is 1

• Testing does not do this
– only verifies a correct output on some inputs

Reasoning

• “Thinking through” what the code does on all inputs
– neither testing nor type checking can do this

• Can be done formally or informally
– most professionals reason informally
– we will start with formal reasoning and move to informal

formal reasoning is a steppingstone to informal reasoning (same core ideas)
formal reasoning still needed for the hardest problems

• Definition of correctness comes from the
specification…

Correctness Requires a Specification

Specification contains two sets of facts

 Precondition:
facts we are promised about the inputs

 Postcondition:
facts we are required to ensure for the output

 Correctness (satisfying the spec):
for every input satisfying the precondition,
the output will satisfy the postcondition

Facts

• Starting point for reasoning is “facts” about the code
– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number
int f(int n) {
 final int m = 2 * n;
 return (m + 1) * (m – 1);
};

• At the return statement, we know these facts:
– n	≥	0
– m	=	2n

find facts by reading along path
from top to return statement

note: these hold for all valid inputs

Facts

• Starting point for reasoning is “facts” about the code
– things we know to be true about the variables

these hold for all inputs (no matter what value the variable has)

– typically, “=” or “≤”

// @param n a natural number
int f(int n) {
 final int m = 2 * n;
 return (m + 1) * (m – 1);
};

• No need to include the fact that n is an integer (n	:	ℤ)
– that is true, but the type checker takes care of that
– no need to repeat reasoning done by the type checker

Finding Facts at a Return Statement

• Consider this code:

// Inputs a and b can be any integers.
// Returns a non-negative integer.
int f(int a, int b) {
 final List L = cons(a, cons(b, nil));
 if (a >= 0 && b >= 0)
 return sum(L);
 …

• Known facts include “a	≥	0”, “b	≥	0”, and “L	=	cons(…)”
• Remains to prove that “sum(L)	≥	0”

find facts by reading along path
from top to return statement

facts are math statements about the code

Implications

• We can use the facts we know to prove more facts
– if we can prove R using facts P and Q,

we say that R “follows from” or “is implied by” P and Q
– proving this fact is proving an “implication”

• We will see how to do this shortly…
will be familiar to those who have taken 311

Checking Correctness of Functional Code

• Steps for checking correctness of functional code:
1. Collect facts at each return statement
2. Ensure those facts imply each fact of the postcondition

• Checking correctness requires proving implications
– need to prove facts about the return values
– return values must satisfy the facts of the postcondition

• If the known facts do not imply the postcondition,
then the code is wrong
– some valid input does not satisfy the postcondition

the code will be correct in 99% of our examples,
but this is the reason why we do reasoning: to find mistakes

Collecting Facts

• Saw how to collect facts in code consisting of
– "final" variable declarations
– "if" statements
– collect facts by reading along path from top to return

• Those elements cover all code without mutation
– covers everything describable by our math notation
– we can calculate interesting values with recursion

• Will need more tools to handle code with mutation…

Mutation Makes Reasoning Harder

Description Testing Tools Reasoning

no mutation full coverage type checker calculation
induction

local variable mutation “ “ Floyd logic

heap state mutation “ “ rep invariants

array mutation “ for-any facts

HW2

HW4

HW6

HW8

Correctness with No Mutation

• Proving implications is the core step of reasoning
– other techniques output implications for us to prove

• Facts are written in our math notation
– we will use math tools to prove implications

• Core technique is "proof by calculation"

• Other techniques we will need:
– proof by cases
– structural induction

Proof by Calculation

Proof by Calculation

• Proves an implication
– fact to be shown is an equation or inequality

• Uses known facts and definitions
– latter includes, e.g., the fact that len(nil)	=	0

Example Proof by Calculation

• Given x	=	y and z	≤	10, prove that x	+	z	≤	y	+	10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x	+	z
	 	

since x	=	y

=			y	+	z ≤		y	+	10

since z	≤	10

All together, this tells us that x	+	z		≤		y	+	10

Example Proof by Calculation

• Given x	=	y and z	≤	10, prove that x	+	z	≤	y	+	10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x	+	z
			=	y	+	z		 	 	 since x	=	y
			≤	y	+	10	 	 	 since z	≤	10	 	

– easier to read when split across lines
– “calculation block”, includes explanations in right column

proof by calculation means using a calculation block

– “=” or “≤” relates that line to the previous line

Calculation Blocks

• Chain of “=” shows first = last

a
		=	b
		=	c		 	 	 	 	
		=	d

– proves that a	=	d
– all 4 of these are the same number

Calculation Blocks

• Chain of “=” and “≤” shows first ≤ last

x	+	z
			=	y	+	z		 	 	 since x	=	y
			≤	y	+	10	 	 	 since z	≤	10
			=	y	+	3	+	7
			≤	w	+	7	 	 	 since y	+	3	≤	w	

– each number is equal or strictly larger that previous
last number is equal or strictly larger than the first number

– analogous for “≥”

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
int f(int x, int y) => {
 return x + y;
};

• Known facts “x	≥	1” and “y	≥	1”

• Correct if the return value is a positive integer

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.
int f(int x, int y) => {
 return x + y;
};

• Correct if the return value is a positive integer

x	+	y
			≥	x	+	1		 	 	 since y	≥	1
			≥	1	+	1		 	 	 since	x	≥	1
			=	2
			≥	1	 	 	 	 	

– calculation shows that x	+	y	≥	1

Using Calculation to Prove Correctness

// Inputs x and y with x >= 9 and y >= -8
// Returns a positive integer.
int f(int x, int y) => {
 return x + y;
};

• Known facts “x	≥	9” and “y	≥	–8”

• Correct if the return value is a positive integer

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y with x >= 9 and y >= -8
// Returns a positive integer.
int f(int x, int y) => {
 return x + y;
};

• Known facts “x	≥	9” and “y	≥	–8”

• Correct if the return value is a positive integer

x	+	y
			≥	x	+	-8	 	 	 	 since y	≥	-8
			≥	9	–	8		 	 	 	 since	x	≥	9
			=	1

Using Calculation to Prove Correctness

// Inputs x and y with x > 8 and y > -9
// Returns a positive integer.
int f(int x, int y) => {
 return x + y;
};

• Known facts “x	>	8” and “y	>	–9”

• Correct if the return value is a positive integer

x	+	y
			>	x	+	-9	 	 	 since y	>	-9
			>	8	-	9	 	 	 	 since	x	>	8
			=	-1

warning: avoid using “>” (or “<“) multiple times in a calculation block

Using Calculation to Prove Correctness

// Inputs x and y with x > 3 and y > 4
// Returns an integer that is 10 or larger.
int f(int x, int y) => {
 return x + y;
};

• Known facts “x	≥	4” and “y	≥	5”

• Correct if the return value is 10 or larger

x	+	y	

Using Calculation to Prove Correctness

// Inputs x and y with x > 3 and y > 4
// Returns an integer that is 10 or larger.
int f(int x, int y) => {
 return x + y;
};

• Known facts “x	≥	4” and “y	≥	5”

• Correct if the return value is 10 or larger

x	+	y
			≥	x	+	5		 	 	 since y	≥	5
			≥	4	+	5		 	 	 since	x	≥	4
			=	9

proof doesn’t work because the code is wrong!

Using Definitions in Calculations

• Most useful with function calls
– cite the definition of the function to get the return value

• For example:

 	 	sum(nil) :=		0
	 	 	sum(x	::	L)	 :=		x	+	sum(L)

• Can cite facts such as
– sum(nil)	=	0
– sum(a	::	b	::	nil)	=	a	+	sum(b	::	nil)

second case of definition with x	=	a and L	=	b	::	nil

Recall: Finding Facts at a Return Statement

• Consider this code

// Inputs a and b must be integers.
// Returns a non-negative integer.
int f(int a, int b) {
 final List L = cons(a, cons(b, nil));
 if (a >= 0 && b >= 0)
 return sum(L);
 …

• Known facts include “a	≥	0”, “b	≥	0”, and “L	=	cons(…)”
• Must prove that sum(L)	≥	0

find facts by reading along path
from top to return statement

Using Definitions in Calculations

 	 	sum(nil) :=		0
	 	 	sum(x	::	L)	 :=		x	+	sum(L)

• Know “a	≥	0”, “b	≥	0”, and “L	=	a	::	b	::	nil”

• Prove that sum(L)	≥	0

sum(L)	

Using Definitions in Calculations

 	 	sum(nil) :=		0
	 	 	sum(x	::	L)	 :=		x	+	sum(L)

• Know “a	≥	0”, “b	≥	0”, and “L	=	a	::	b	::	nil”

• Prove that sum(L)	≥	0

sum(L)
			=	sum(a	::	b	::	nil)	 	 	 since L	=	a	::	b	::	nil
			=	a	+	sum(b	::	nil)	 	 	 def of	sum
			=	a	+	b	+	sum(nil)		 	 def of	sum
			=	a	+	b	 	 	 	 	 def of sum
			≥	0	+	b	 	 	 	 	 since a	≥	0
			≥	0		 	 	 	 	 since b	≥	0

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
int f(int x, int y) {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Known fact in then (top) branch: “y	≤	-1”

x	+	y	

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
int f(int x, int y) {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Known fact in then (top) branch: “y	≤	-1”

x	+	y
			≤	x	+	-1	 	 	 since	y	≤	-1
			<	x	+	0		 	 	 since	-1	<	0
			=	x

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
int f(int x, int y) {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Known fact in else (bottom) branch: “y	≥	0”

x	–	1		

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.
int f(int x, int y) {
 if (y < 0) {
 return x + y;
 } else {
 return x – 1;
 }
};

• Known fact in else (bottom) branch: “y	≥	0”

x	–	1	
			<	x	+	0		 	 	 since	–1	<	0
			=	x

Proving Correctness with Multiple Claims

• Need to check the claim from the spec at each return

• If spec claims multiple facts, then
we must prove that each of them holds

// Inputs x and y are integers with x < y - 1
// Returns a number less than y and greater than x.
int f(int x, int y) { .. };

– multiple claims to prove: x	<	r	and	r	<	y
where “r” is the return value

– requires two calculation blocks

Example Correctness with Conditionals

// Returns r with (r=a or r=b) and r >= a and r >= b
int max(int a, int b) {
 if (a >= b) {
 return a;
 } else {
 return b;
 }

};

• Three different facts to prove at each return

• Two known facts in each branch (return value is “r”):
– then branch: a	≥	b		and		r	=	a
– else branch:	 	 a	<	b		and		r	=	b
– prove an "or" holds by proving one of the two options holds

declarative spec of max

Proof By Cases

Proof By Cases

• Sometimes necessary split a proof into cases
– fact may be hard to prove for all values at once

• Example: can't prove it for all x at once,
but can prove it for x	≥	0 and x	<	0
– will see an example next

• If we can prove it in those two cases, it holds for all x
– follows since the cases are exhaustive

(don’t need to be exclusive in this case)

– can pick any cases we want, not just cases in the code

Example Proof By Cases

f	:	ℤ	→	ℤ	

	 f(m)	:=	2m	+	1	 	 	 if m	≥	0
	 f(m)	:=	0		 	 	 	 if m	<	0

• Want to prove that f(m)	>	m

• Doesn't seem possible as is
– can't even apply the definition of f
– need to know if m	<	0 or m	≥	0

• Split our analysis into these two separate cases…

Proof By Cases

f(m)	:=	2m	+	1	 	 	 if m	≥	0
	 f(m)	:=	0		 	 	 	 if m	<	0

• Prove that f(m)	>	m

Case m	≥	0:

	 f(m)		=
	 	
	 	
	 	 	 	
	 	 >	m

Proof By Cases

f(m)	:=	2m	+	1	 	 	 if m	≥	0
	 f(m)	:=	0		 	 	 	 if m	<	0

• Prove that f(m)	>	m

Case m	≥	0:

	 f(m)		=	2m	+	1	 	 	 def of f (since m	≥	0)
	 	 	=	m	+	m	+	1
	 	 	≥	m	+	1		 	 	 since	m	≥	0
	 	 	>	m	 	 	 	 since	1	>	0

side condition requires a "since"

Proof By Cases

f(m)	:=	2m	+	1	 	 	 if m	≥	0
	 f(m)	:=	0		 	 	 	 if m	<	0

• Prove that f(m)	>	m

Case m	≥	0:

	 	f(m)	=	…	>	m

Case m	<	0:

	 f(m)		=	0		 	 	 	 def of f (since m	<	0)
	 	 	>	m	 	 	 	 since m	<	0

Since these two cases are exhaustive, f(m)	>	m holds in general.

Recall: Correctness with No Mutation

• Proving implications is the core step of reasoning
– other techniques output implications for us to prove

• Core technique is "proof by calculation"
– other techniques break down into calculations also

• Other techniques we will need:
– proof by cases
– structural induction

Structural Induction

Proof by Calculation

• Our proofs so far have used fixed-length lists
– e.g., sum(a	::	b	::	nil)	≥	0

• Would like to prove facts about any length list L

• For example…

Example: Repeating List Elements

• Consider the following function:

	 echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Produces a list where every element is repeated twice

echo(1	::	2	::	nil)
		=	1	::	1	::	echo(2	::		nil)	 	 	 	 def of echo
		=	1	::	1	::	2	::	2	::	echo(nil)	 	 	 	 def of echo
		=	1	::	1	::	2	::	2	::	nil	 	 	 	 	 def of echo

Example: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Suppose we have the following code:

final int m = len(S); // S is some List
final List R = echo(S);
…
return 2*m; // = len(echo(S))

– spec says to return len(echo(S)) but code returns 2	len(S)

• Need to prove that len(echo(S))	=	2	len(S)

Proof by Calculation

• Our proofs so far have used fixed-length lists
– e.g., sum(a	::	b	::	nil)	≥	0

• Would like to prove facts about any length list L

• Need more tools for this…
– structural recursion calculates on inductive types
– structural induction reasons about inductive types

both tools are specific to inductive types

Structural Induction

Let P(S) be the claim “len(echo(S))	=	2	len(S)”

To prove P(S) holds for any list S, prove two implications

 Base Case: prove P(nil)
– use any known facts and definitions

 Inductive Step: prove P(x	::	L)

– x and L are variables
– use any known facts and definitions plus one more fact…
– make use of the fact that L is also a List

Structural Induction

To prove P(S) holds for any list S, prove two implications

 Base Case: prove P(nil)
– use any known facts and definitions

 Inductive Hypothesis: assume P(L) is true
– use this in the inductive step, but not anywhere else

 Inductive Step: prove P(x	::	L)
– use known facts and definitions and Inductive Hypothesis

Why This Works

With Structural Induction, we prove two facts

	 P(nil)	 	 	 	 len(echo(nil))	=	2	len(nil)
	 P(x	::	L)	 	 	 len(echo(x	::	L))	=	2	len(x	::	L)
	 	 	 	 	 	 	 (second assuming len(echo(L))	=	2	len(L))

Why is this enough to prove P(S) for any S	:	List?

Why This Works

Build up an object using constructors:

	 nil first constructor
 2	::	nil	 	 	 second constructor
 1	::	2	::	nil	 	 	 	 	 	 second constructor

1 2 nil

nil already exists when building 2	::	nil

2	::	nil already exists when building 1	::	2	::	nil

Why This Works

Build up a proof the same way we built up the object

	 P(nil)	 	 	 	 len(echo(nil))	=	2	len(nil)
	 P(x	::	L)	 	 	 len(echo(x	::	L))	=	2	len(x	::	L)
	 	 	 	 	 	 	 (second assuming len(echo(L))	=	2	len(L))

1 2 nil

P(nil) already proven when proving P(2	::	nil)

P(2	::	nil) already proven when proving P(1	::		2	::	nil)

P(nil)

Example: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that len(echo(S))	=	2	len(S) for any S	:	List

Base Case (nil):

 Need to prove that len(echo(nil))	=	2	len(nil)

	 	 len(echo(nil))
	 	 				=
	 	
	 	
	 	
	 	 				=	2	len(nil)

len(nil) :=		0
len(x	::	L)	 :=		1	+	len(L)

Example: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that len(echo(S))	=	2	len(S) for any S	:	List

Base Case (nil):

	 len(echo(nil))	 =	len(nil)	 	 	 def of	echo
=	0	 	 	 	 	 def of	len
=	2	·	0	 	 	
	 	 	 	 	 def of	len	 	=	2	len(nil)	 	 	

Example: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that len(echo(S))	=	2	len(S) for any S	:	List

Inductive Step (x	::	L):

 Need to prove that len(echo(x	::	L))	=	2	len(x	::	L)

 Get to assume claim holds for L, i.e., that len(echo(L))	=	2	len(L)

Example: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that len(echo(S))	=	2	len(S) for any S	:	List

Inductive Hypothesis: assume that len(echo(L))	=	2	len(L)

Inductive Step (x	::	L):

	 len(echo(x	::	L))	

	 	 	 	 	 	 	=	2	len(x	::	L)
len(nil) :=		0
len(x	::	L)	 :=		1	+	len(L)

Example: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that len(echo(S))	=	2	len(S) for any S	:	List

Inductive Hypothesis: assume that len(echo(L))	=	2	len(L)

Inductive Step (x	::	L):

	 len(echo(x	::	L))	 =	len(x	::	x	::	echo(L))	 	 	 def of echo	 	

	 	 	 	 	 =	2	len(x	::	L)		 	 	 	

=	1	+	len(x	::	echo(L))		 	 def of len
=	2	+	len(echo(L))	 	 	 def of len
=	2	+	2	len(L)	 	 	 	 Ind. Hyp.
=	2(1	+	len(L))	

def of len
len(nil) :=		0
len(x	::	L)	 :=		1	+	len(L)

Structural Induction in General

• General case: assume P holds for constructor arguments

type	T		:=		A		|		B(x	:	ℤ)		|		C(y	:	ℤ	,	t	:	T)		|	D(z	:	ℤ	,	u	:	T,	v	:	T)

• To prove P(t) for any t, we need to prove:
– P(A)
– P(B(x))	for	any	x	:	ℤ
– P(C(y,	t))	for	any	y	:	ℤ	and	t	:	T
– P(D(z,	u,	v))	for	any	z	:	ℤ	and	u,	v	:	T

• These four facts are enough to prove P(t) for any t
– for each constructor, have proof that it produces an object satisfying P

assuming P(t) is true
assuming P(u) and P(v)

Structural Induction in General

• Each inductive type has its own form of induction
– special way to reason about that type

• Lists are defined like this:

type	List		:=		nil		|		cons(x	:	ℤ,	L	:	List)

• To prove P(S) for any list S, we need to prove:
– P(nil)
– P(x	::	L)	for	any	x	:	ℤ	and	L	:	List assuming P(L) is true

Example 2: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Suppose we have the following code:

final int y = sum(S); // S is some List
final List R = echo(S);
…
return 2*y; // = sum(echo(S))

– spec says to return sum(echo(S)) but code returns 2	sum(S)

• Need to prove that sum(echo(S))	=	2	sum(S)

Example 2: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that sum(echo(S))	=	2	sum(S) for any S	:	List

Base Case (nil):

	 sum(echo(nil))	 =
	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 =	2	sum(nil)

sum(nil) :=		0
sum(x	::	L)	 :=		x	+	sum(L)

Example 2: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that sum(echo(S))	=	2	sum(S) for any S	:	List

Base Case (nil):

	 sum(echo(nil))	 =	sum(nil)	 	 	 def of	echo
	 	 	 	 	
	
	 	 	 	 	 =	2	sum(nil)	 	 	

Inductive Step (x	::	L):

 Need to prove that	sum(echo(x	::	L))	=	2	sum(x	::	L)
 Get to assume claim holds for	L, i.e., that	sum(echo(L))	=	2	sum(L)

=	0	 	 	 	 	 def of	sum
=	2	·	0	 	 	

def of	sum

Example 2: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that sum(echo(S))	=	2	sum(S) for any S	:	List

Inductive Hypothesis: assume that sum(echo(L))	=	2	sum(L)

Inductive Step (x	::	L):

	 sum(echo(x	::	L))	 =
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 =	2	sum(x	::	L)

sum(nil) :=		0
sum(x	::	L)	 :=		x	+	sum(L)

Example 2: Repeating List Elements

echo(nil)		 :=	nil
	 echo(x	::	L)	 :=	x	::	x	::	echo(L)

• Prove that sum(echo(S))	=	2	sum(S) for any S	:	List

Inductive Hypothesis:	assume that sum(echo(L))	=	2	sum(L)

Inductive Step (x	::	L):

	 sum(echo(x	::	L))	 =	sum(x	::	x	::	echo(L))		 	 def of echo
	 	 	 	 	 =	x	+	sum(x	::	echo(L))	 	 def of sum
	 	 	 	 	 =	2x	+	sum(echo(L))	 	 	 def of sum
	 	 	 	 	 =	2x	+	2	sum(L)	 	 	 	 Ind. Hyp.
	 	 	 	 	 =	2(x	+	sum(L))	 	 	 	 	
	 	 	 	 	 =	2	sum(x	::	L)	 	 	 	 def of sum

Recall: Concatenating Two Lists

• Mathematical definition of concat(S,	R)

	 	concat(nil, R) :=		R
	 	concat(x	::	L,	R)	 :=		x	::	concat(L,	R)

• Puts all the elements of L before those of R

concat(1	::	2	::	nil,	3	::	4	::	nil)
		=	1	::	concat(2	::	nil,	3	::	4	::	nil)		 	 def of concat
		=	1	::	2	::	concat(nil,	3	::	4	::	nil)		 	 def of concat
		=	1	::	2	::	3	::	4	::	nil	 	 	 	 	 def of concat

important operation
abbreviated as "⧺"

Example 3: Length of Concatenated Lists

concat(nil,	R)		 :=		R
	 concat(x	::	L,	R)	 :=		x	::	concat(L,	R))

• Suppose we have the following code:

final int m = len(S); // S is some List
final int n = len(R); // R is some List
…
return m + n; // = len(concat(S, R))

– spec returns len(concat(S,	R)) but code returns len(S)	+	len(R)

• Need to prove that len(concat(S,	R))	=	len(S)	+	len(R)

Example 3: Length of Concatenated Lists

concat(nil,	R)		 :=		R
	 concat(x	::	L,	R)	 :=		x	::	concat(L,	R))

• Prove that len(concat(S,	R))	=	len(S)	+	len(R)
– prove by induction on S
– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

	 len(concat(nil,	R))	=
	 	 	 	 	

	 	 	 	 	 =	len(nil)	+	len(R)

Example 3: Length of Concatenated Lists

concat(nil,	R)		 :=		R
	 concat(x	::	L,	R)	 :=		x	::	concat(L,	R))

• Prove that len(concat(S,	R))	=	len(S)	+	len(R)
– prove by induction on S
– prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

	 len(concat(nil,	R))	=	len(R)		 	 	 def of	concat
	 	 	 	 	 =	0	+	len(R)	 	 	
	 	 	 	 	 =	len(nil)	+	len(R)	 def of	len

Example 3: Length of Concatenated Lists

concat(nil,	R)		 :=		R
	 concat(x	::	L,	R)	 :=		x	::	concat(L,	R))

• Prove that len(concat(S,	R))	=	len(S)	+	len(R)

Inductive Step (x	::	L):

	 Need to prove that

	 	 len(concat(x	::	L,	R))	=	len(x	::	L)	+	len(R)

	 Get to assume claim holds for	L, i.e., that

	 	 len(concat(L,	R))	=	len(L)	+	len(R)

Example 3: Length of Concatenated Lists

concat(nil,	R)		 :=		R
	 concat(x	::	L,	R)	 :=		x	::	concat(L,	R))

• Prove that len(concat(S,	R))	=	len(S)	+	len(R)

Inductive Hypothesis: assume that len(concat(L,	R))	=	len(L)	+	len(R)

Inductive Step (x	::	L):

	 len(concat(x	::	L,	R))	 =	

	 	 	 	 	 	 	 =	len(x	::	L)	+	len(R)

Example 3: Length of Concatenated Lists

concat(nil,	R)		 :=		R
	 concat(x	::	L,	R)	 :=		x	::	concat(L,	R))

• Prove that len(concat(S,	R))	=	len(S)	+	len(R)

Inductive Hypothesis: assume that len(concat(L,	R))	=	len(L)	+	len(R)

Inductive Step (x	::	L):

	 len(concat(x	::	L,	R))	 =	len(x	::	concat(L,	R))		 def of concat
	 	 	 	 	 	 =	1	+	len(concat(L,	R))	 def of len
	 	 	 	 	 	 =	1	+	len(L)	+	len(R)	 	 Ind. Hyp.
	 	 	 	 	 	 =	len(x	::	L)	+	len(R)	 	 def of len

Comparing Reasoning vs Testing

static List concat(List S, List R) {
 if (S == nil) {
 return R;
 } else {
 return cons(S.hd, concat(S.tl, R));
 }

};

• Testing: 3 cases
– loop coverage requires 0, 1, and many recursive calls
– does not guarantee the code works on all inputs

• Reasoning: 2 calculations

