CSE 331
Software Desigh & Implementation

James Wilcox



About Me

* Asst Teaching Prof in CSE
— did my PhD here 2013-2019

James Wilcox

* Interested in:
— programming languages
— distributed systems
— teaching programming
— music (mostly choir)
— running



About Me

* Asst Teaching Prof in CSE
— did my PhD here 2013-2019

James Wilcox

* Built a wide range of systems and applications

Systems Applications
e compilers » desktop apps
* operating systems * web apps
 distributed systems * phone apps
* nhetworking systems * IDE
* database systems e games

graphics



About You

 Familiar with Java at the level of 123
— understand primitive vs reference types
— familiar with recursive functions

* Probably in your first/second year of the major



About This Class

* Very little content change vs 10 years ago
— maybe 10% changes based on who teaches it

* Substantial homework changes

— made a big change ~3 years ago
typical student went from senior to sophomore

— making another change this year
need to consider the role of Al



"Coding, or the translation of a precise design into
software instructions, is dead. Al can do that."

— Magda Balazinska



About This Class

"Coding, or the translation of a precise design into
software instructions, is dead. Al can do that."

— Magda Balazinska

* We will not do any coding this quarter (in that sense)
— we will focus on the parts that come before and after

 Before coding, you must write a precise design

* After coding, you must check that it is correct



Before Coding

* A precise design requires a precise "specification"
— says exactly what input/output behavior is expected
— Al cannot read your mind!

* A correct specification should:
— rule out every implementation you don't want
— rule out no implementation you would accept

e Surprisingly difficult to do



Before Coding

* A precise design requires a precise "specification"
— says exactly what input/output behavior is expected

* Also want our designs to lead to code that is
— easy to understand
— easy to test
— easy to change

* Will look at ways to achieve this



After Coding

* After coding, you must ensure it is correct
— correctness is the most important requirement

* Correctness is the hard part...

* Google search team was called "search quality”
— hard part is measuring how good the results are
— ohce you can do that, you can try various improvements



After Coding

* After coding, you must ensure it is correct
— correctness is the most important requirement

* Correctness is the hard part...

* Once you know how to check if code is correct,
you can try different ideas for how to solve it

— see CSE 421 for broad approaches



After Coding

* After coding, you must ensure it is correct

* How do you do that?

* Trying on a few examples is insufficient
— if this is enough, then Al can do that too

— Dijkstra did not just try his algorithm
on a few graphs




After Coding

* After coding, you must ensure it is correct
* How do you do that?

e CS standard is a proof of correctness

— only way to know the code is fully correct for all inputs
— we will focus on how to do this



Software Development Process

1. Specification

2. Plan Generation

3. Coding
Implementation
4. Correctness

— we will not talk much about plan generation
— we will not talk much about coding



Course Structure



Topics

* Content organized into "topics"
— each is one week of material

* Topics will alternate between

— design (specifications)
— implementation (correctness)

5 weeks of each, alternating between them



Lectures

* |n person
— Monday, Wednesday, and Friday in CSE2 GO1
— Will also be recorded

e 3 lectures on each "topic"
— hence, one week of material
— slides for one topic (once released) will be one PDF



Concept Checks

One after each lecture
— due the next day by 6pm

Intended to keep you up-to-date with lectures

Have as many attempts as needed
— no reason not to get 100%

Only need to complete 90% of them for full credit



Homework and Section

* 8 homework assighments
— Weekly except for midterm week

* Released with section meeting on Thursdays

e Section consists of practice problems
— Participation is graded



Exams

 Midterm in class Friday, February 13

* Final exam at an unusual time and place
— on Tuesday, March 17t at 12:30
— BAG 131/154



Course Mechanics



Websites

* All public materials posted on the website
— lecture slides
— homework problems

* All work submitted in Gradescope

* Everything on Canvas is private
— do not share



Course Policies



Late Policy

* Plan to attend lecture and section
— students who attend generally outperform those who don't

* Late policies primarily for students who are sick
— lectures: will be recorded

— concept checks: 90% completed will round up to 100%
regular due date will be 6pm on day after the lecture

— homework: allow 3 late days during the quarter
at most one per assignment without special permission



Collaboration (At Home)

* Work you turn in must be your own

* Fine to work with others to figure out the problem,
but not to write up your solution

— do not take any copies of a joint work
— wait 30 minutes before writing yours up

* Al only to be used on problems where that is indicated
— each design HW has a problem where Al is used



Grading



Grading

 Grade average may be lower than before

 Grades are a lot less important than before
— companies care about interviews
— grad schools care more about recommendations
— good chance no one else ever sees them



Grading

* Overall scores computed as

5%

10%
35%
20%
30%

Concept Checks
Section Participation
Homework

Midterm Exam

Final Exam



Grading

* Final grade formula TBD
— will need to see how things look

* Broadly speaking:
— 90% on homework and
— 80% on final
— means 3.5 grade



Extra Credit

* One problem in each homework

 Used to round up course grades close to cut-off
— only if substantial effort

* |f you ask me to bump your grade at the end of
the quarter, | will ask you about the extra credit.



Pre-Class Material

* University standard is 2 hours of outside work
for each hour in class

* Pre-class material (reading) for first week:
— Wed: notes on software design
— Fri: notes on mathematical notation
— Mon: notes on software implementation

* Only occasional pre-class material reading for
later weeks



	Slide 1: Software Design & Implementation
	Slide 2: About Me
	Slide 3: About Me
	Slide 4: About You
	Slide 5: About This Class
	Slide 6: "Coding, or the translation of a precise design into software instructions, is dead. AI can do that." 
	Slide 7: About This Class
	Slide 8: Before Coding
	Slide 9: Before Coding
	Slide 10: After Coding
	Slide 11: After Coding
	Slide 12: After Coding
	Slide 13: After Coding
	Slide 14: Software Development Process
	Slide 15: Course Structure
	Slide 16: Topics
	Slide 17: Lectures
	Slide 18: Concept Checks
	Slide 19: Homework and Section
	Slide 20: Exams
	Slide 21: Course Mechanics
	Slide 22: Websites
	Slide 23: Course Policies
	Slide 24: Late Policy
	Slide 25: Collaboration (At Home)
	Slide 26: Grading
	Slide 27: Grading
	Slide 28: Grading
	Slide 29: Grading
	Slide 30: Extra Credit
	Slide 31: Pre-Class Material

