
Software Design & Implementation

James Wilcox

CSE 331

About Me

• Asst Teaching Prof in CSE

– did my PhD here 2013-2019

• Interested in:

– programming languages

– distributed systems

– teaching programming

– music (mostly choir)

– running

James Wilcox

About Me

• Asst Teaching Prof in CSE

– did my PhD here 2013-2019

• Built a wide range of systems and applications

James Wilcox

Applications
• desktop apps

• web apps

• phone apps

• IDE

• games

• …

Systems
• compilers

• operating systems

• distributed systems

• networking systems

• database systems

• graphics

• …

About You

• Familiar with Java at the level of 123

– understand primitive vs reference types

– familiar with recursive functions

• Probably in your first/second year of the major

About This Class

• Very little content change vs 10 years ago

– maybe 10% changes based on who teaches it

• Substantial homework changes

– made a big change ~3 years ago

typical student went from senior to sophomore

– making another change this year

need to consider the role of AI

"Coding, or the translation of a precise design into

software instructions, is dead. AI can do that."

— Magda Balazinska

About This Class

• We will not do any coding this quarter (in that sense)

– we will focus on the parts that come before and after

• Before coding, you must write a precise design

• After coding, you must check that it is correct

"Coding, or the translation of a precise design into
software instructions, is dead. AI can do that."

— Magda Balazinska

Before Coding

• A precise design requires a precise "specification"

– says exactly what input/output behavior is expected

– AI cannot read your mind!

• A correct specification should:

– rule out every implementation you don't want

– rule out no implementation you would accept

• Surprisingly difficult to do

Before Coding

• A precise design requires a precise "specification"

– says exactly what input/output behavior is expected

• Also want our designs to lead to code that is

– easy to understand

– easy to test

– easy to change

• Will look at ways to achieve this

After Coding

• After coding, you must ensure it is correct

– correctness is the most important requirement

• Correctness is the hard part…

• Google search team was called "search quality"

– hard part is measuring how good the results are

– once you can do that, you can try various improvements

After Coding

• After coding, you must ensure it is correct

– correctness is the most important requirement

• Correctness is the hard part…

• Once you know how to check if code is correct,

you can try different ideas for how to solve it

– see CSE 421 for broad approaches

After Coding

• After coding, you must ensure it is correct

• How do you do that?

• Trying on a few examples is insufficient

– if this is enough, then AI can do that too

– Dijkstra did not just try his algorithm

on a few graphs

After Coding

• After coding, you must ensure it is correct

• How do you do that?

• CS standard is a proof of correctness

– only way to know the code is fully correct for all inputs

– we will focus on how to do this

Software Development Process

Design

Implementation

1. Specification what

2. Plan Generation how

3. Coding

4. Correctness

– we will not talk much about plan generation (see CSE 421)

– we will not talk much about coding (AI does that)

Course Structure

Topics

• Content organized into "topics"

– each is one week of material

• Topics will alternate between

– design (specifications)

– implementation (correctness)

• 5 weeks of each, alternating between them

Lectures

• In person

– Monday, Wednesday, and Friday in CSE2 G01

– Will also be recorded

• 3 lectures on each "topic"

– hence, one week of material

– slides for one topic (once released) will be one PDF

Concept Checks

• One after each lecture

– due the next day by 6pm

• Intended to keep you up-to-date with lectures

• Have as many attempts as needed

– no reason not to get 100%

• Only need to complete 90% of them for full credit

Homework and Section

• 8 homework assignments

– Weekly except for midterm week

• Released with section meeting on Thursdays

• Section consists of practice problems
– Participation is graded

Exams

• Midterm in class Friday, February 13

• Final exam at an unusual time and place

– on Tuesday, March 17th at 12:30

– BAG 131/154

Course Mechanics

Websites

• All public materials posted on the website

– lecture slides

– homework problems

• All work submitted in Gradescope

• Everything on Canvas is private

– do not share

Course Policies

Late Policy

• Plan to attend lecture and section

– students who attend generally outperform those who don't

• Late policies primarily for students who are sick

– lectures: will be recorded

– concept checks: 90% completed will round up to 100%

regular due date will be 6pm on day after the lecture

– homework: allow 3 late days during the quarter

at most one per assignment without special permission

Collaboration (At Home)

• Work you turn in must be your own

• Fine to work with others to figure out the problem,

but not to write up your solution

– do not take any copies of a joint work

– wait 30 minutes before writing yours up

• AI only to be used on problems where that is indicated

– each design HW has a problem where AI is used

Grading

Grading

• Grade average may be lower than before

• Grades are a lot less important than before

– companies care about interviews

– grad schools care more about recommendations

– good chance no one else ever sees them

Grading

• Overall scores computed as

5% Concept Checks

10% Section Participation

35% Homework

20% Midterm Exam

30% Final Exam

Grading

• Final grade formula TBD

– will need to see how things look

• Broadly speaking:

– 90% on homework and

– 80% on final

– means 3.5 grade

Extra Credit

• One problem in each homework

• Used to round up course grades close to cut-off

– only if substantial effort

• If you ask me to bump your grade at the end of

the quarter, I will ask you about the extra credit.

Pre-Class Material

• University standard is 2 hours of outside work

for each hour in class

• Pre-class material (reading) for first week:

– Wed: notes on software design

– Fri: notes on mathematical notation

– Mon: notes on software implementation

• Only occasional pre-class material reading for

later weeks

	Slide 1: Software Design & Implementation
	Slide 2: About Me
	Slide 3: About Me
	Slide 4: About You
	Slide 5: About This Class
	Slide 6: "Coding, or the translation of a precise design into software instructions, is dead. AI can do that."
	Slide 7: About This Class
	Slide 8: Before Coding
	Slide 9: Before Coding
	Slide 10: After Coding
	Slide 11: After Coding
	Slide 12: After Coding
	Slide 13: After Coding
	Slide 14: Software Development Process
	Slide 15: Course Structure
	Slide 16: Topics
	Slide 17: Lectures
	Slide 18: Concept Checks
	Slide 19: Homework and Section
	Slide 20: Exams
	Slide 21: Course Mechanics
	Slide 22: Websites
	Slide 23: Course Policies
	Slide 24: Late Policy
	Slide 25: Collaboration (At Home)
	Slide 26: Grading
	Slide 27: Grading
	Slide 28: Grading
	Slide 29: Grading
	Slide 30: Extra Credit
	Slide 31: Pre-Class Material

