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It is important for us to have tools that we can use to reason about code outside the context of a specific
programming language. This article defines the mathematical tools that we will use for this purpose, starting
first with data (“types”) and then moving to code (“functions”).

Data Types

Each data type defines a collection of allowed values. If “z” is a variable and “T” is a data type, then the
statement “x : T”, read “z has type T, says that the value of x is something included in T
In math terms, data types are “sets”. The most basic sets that we will use for data types are the following;:

all non-negative integers (“natural” numbers)
all integers

all real numbers

the boolean values (T and F)

any character

any sequence of characters (“strings”)

e ENZ

Compound Types

We can construct new types from existing types A and B using the following operators:
e Union: AU B is the set that includes every value in either A or B (or both)
e Tuple: A x B is the set of all pairs of the form (a,b) with a: A and b: B

e Record: {z: A,y : B} is the set of all records containing fields called “z” and “y” of types A and B,
respectively

Both this tuple and record type represent values that include both a value of type A and a value of
B, together in one object. The only difference is that the record identifies to the two parts by giving them
names (z and y), whereas the parts of a tuple are identified by order. In the tuple (a,b) : A X B, it is the
first part “a” that has type A.

If f:{x: Ay: B} is arecord, then we can refer to the part of type A as “f.z”. On the other hand,
if t : A x B, then we don’t have any immediate way to refer to the parts. To talk about them, we have to
define new variable names. Specifically, we can say “let (a,b) := t”, and then “a” refers to the A part of ¢
and “b” refers to the B part.!

Both tuples and records can have more than two components, if desired.

IThe symbol “:=” indicates a definition, rather than an equation. In general, the equation “(a,b) = t” could be true or
false, depending on the values of these variables, whereas the definition “(a,b) := t” tells us that the previous equation certainly
holds because we are defining “a” and “b” to make it so.



Inductive Types

The most powerful way to define new types combines the power of union and tuple / record and a critical
element missing above, namely, recursion. We call these “inductive types”.
In general, an inductive type definition looks like something the following:

type T:=A|Bu:N) | Clv:Nyw:T)|D(z:N,y:T, 2:T)

The “|” here is like union (U) except that the different possibilities are known to be distinct, whereas union
can be formed between data types that include some common values.

The names “A”, “B”, “C”, and “D” are “constructors”. Each of them describes a distinct way to create
values of type T'. Constructors can optionally take arguments (“A” has no arguments, but the rest do). The
argument types can be any known type including “T" itself. The latter case is called a “recursive argument”.

Values of type T are written by describing how the value was created via constructors. For example,
“A” “B(1)”, and “C(2,A)” are all values of type T. (Notice the recursion in the last example.)

It is important to note that these are not function calls. Values of type T are descriptions of the sequence
of constructors used to created them. Two values of type T are equal if and only if they were created
by applying the exact same sequence of constructors, with all the same arguments. Hence, A = A and
B(3) = B(3), but A # B(u), no matter the value of » : N. Similarly, we have C(1,B(2)) # C(1, B(3)) because
the former passed a 2 to the B constructor and the latter a 3.

It is useful to have names for different sorts of inductive types depending on the maximum number of
recursive arguments amongst its constructors. For reasons we will see in class, if this number is 0 (i.e., it has
no recursive arguments), we call it “enum-like”; if this number is 1 (i.e., some constructor has one recursive
argument), we call it “list-like”; and if it is 2 or more, we will call it “tree-like”.

An inductive type with no recursive arguments is called enum-like, but if the constructors have no
arguments at all, then it can actually be called an “enum” type. As an example, the boolean type could be
defined as an enum like this:

type B:=T |F

This says that the ways to directly create boolean values are by writing “T” or “F”.

Natural Numbers

It is also possible to define the natural numbers inductively, albeit with different notation, as follows:
type N := zero | succ(n : N)

The number 2, for example, would then be written “succ(succ(zero))”. (“succ” is short for successor.)

That notation is obviously inconvenient, so we will stick to the usual algebraic numerals, but it is
important for us to recognize that the natural numbers really are an inductive type, even if we don’t write
them with inductive notation. In particular, every natural number is either 0 or it was created by adding
one to another natural number, i.e., it is either 0 or n+ 1 for some natural number n. Since N is an inductive
type with just these two constructors, the two cases just described are exclusive and exhaustive.

Functions

Our basic notation for defining functions works as follows.

First, we declare the type of the function by writing its name followed by “:”, which means “has type”.
For example, the following declares a function called “double” that takes a natural number as input and
returns a natural number:

[IR}]

double : (N) - N

The “—” symbol separates the input and output types of a function, so this says that double has the type
of a function from natural numbers to natural numbers.



Next, we give a formula that describes how to calculate the output from the input. For example, this
formula says that double returns the number 2n, where “n” is the name of its input.

double(n) := 2n

The left-hand side gives the name “n” to the input of double. The right-hand side explains how to calculate
the output. The symbol in between, “:=”  means that this is the definition of double.

In this case, we calculate the output simply by multiplying the input by 2. In general, the right-hand
side of a function definition can use any valid mathematical expression in the declared variables.

We are also free to use any types that can be defined as described in the previous section. For example,
suppose that we defined the following type of points in the plane:

type Point := {z: R, y : R}
Then, we would be able to define the following function:
dist : (Point) — R

This says that dist takes a point in the plane as input and returns a real number. We will see in the next
section how to define the value returned by this function.

Pattern Matching

The first function above was very simple, calculating the return value using the same expression for all
inputs. To write more complex functions, we need to be able to refer to different parts of the input and to
break the inputs up into different cases so that we can give each case its own return value expression.

We can do both of these things via pattern matching. For example, we can define the value of the dist
function above with the following pattern:

dist({z: z, y: y}) = (? +y?)'/?

Above, we declared dist to take a Point as input, so the input is a record containing “z” and “y” fields.
This pattern declares that we will refer to the value in the x field also with the name “z” and, likewise, the
value in the y field with the name “y”. The right-hand side then defines the value returned by dist to be the
distance of the point (z,y) from the origin.

In this example, we know that every input is a record containing fields x and y, so every input “matches”
this one pattern. We can also split the inputs into different cases by writing patterns that only match some
of the inputs, provided that every input matches exactly one of the patterns.

As a simple example, consider the enum type B, and suppose that we want to define the function “not”
that flips the value between true and false. First, we must declare the the function takes a boolean as input
and returns a boolean as output:

not: (B) —» B

Then, we can define the function using pattern matching as follows:
not(T):=F
not(F) :=T

Since every input is either T or F, exactly one of these rules applies. I.e., they are exclusive and exhaustive.
As another example, we could use pattern matching to define double without multiplication as follows:

double(0) :=0
double(n + 1) := double(n) + 2

Once again, exactly one pattern matches any input. As we saw above, the cases 0 and n + 1 are exclusive
and exhaustive for N, so the previous example is a valid way to define the function. If we wanted, we could
instead split the inputs into cases 0, 1, and n + 2 (for any n : N) because those are also exclusive and
exhaustive.



For inductive types, it is natural to have exactly one rule for each constructor. Each value was created
by using a constructor, so exactly one rule will apply. However, we can match more general patterns as well.
For example, suppose that we have the following record type, which stores a real number and a boolean:

type Dir:={z: R, b: B}

Then, we could declare a function f that records of type Dir to real numbers:

f:(Dir) = R
and define it by splitting the inputs into cases based on just the value of the boolean field like this:

fHx: z,b: T} =2
flz:z,b: F}):=—x

Exactly one pattern matches any Dir record, so our rules are exclusive and exhaustive as required.

Notice that, in all of these cases, we did not declare the types of any of the variables used in the patterns.
When defining f, for example, we did not need to say that = has type R. We know that x is the value of the
field called “z” in the type Dir, which is declared to have type R. More generally, as long as we remember
to declare the types of all of our functions, it will always be possible to infer the types of any variables used
in the patterns, making explicit type declarations unnecessary.

Side Conditions

In some cases, it will be necessary to write side conditions that restrict when a given pattern is allowed to
match. For example, we could define the “not” example from before instead like this:

not(b) :=F ifb=T
not(b) :=T iftb=F

Here, all inputs match both patterns, but the side condition ensures that exactly one of the two cases applies.
In order to ensure that this is always the case, we must be careful to make sure that the conditions are also
exclusive and exhaustive.

In general, side conditions are harder to work with when reasoning. (Unlike pattern matching, they
require an explanation of why that side condition holds before the definition can be applied.) For that
reason, we always prefer pattern matching without side conditions.

We will only use side conditions when pattern matching notation is inapplicable. As an example, if z : R
is an argument and we want to define our function differently based on whether x > 1, then we would need
a side condition because we do not have a pattern to describe real numbers greater than 1.



