Lists

James Wilcox and Kevin Zatloukal

August 2024

“Lists are the original data structure of functional programming, just as arrays are the original
data structure of imperative programming.” — Ravi Sethi

List Type
After the natural numbers, lists are the most important inductively defined type. They are defined as follows:
type List := nil | cons(hd: Z, tl: List)

Since lists are so commonly used, we often provide operators as shorthand for functions and constructors.
In particular, we will use the binary operator “::” as shorthand for cons. For example,

1::2:: 3 nil = cons(1, cons(2, cons(3, nil)))

Both notations mean the same thing, but the former is shorter and easier to read.
We will also use the standard list notation [1, 2, 3] at times as shorthand for 1 :: 2 :: 3 :: nil.

List Functions

As an inductive data type, lists come with a built in “=" operator. However, all other functions must be

defined explicitly. Below, we will define some of the most important ones. For many, we will also define
operators that act as shorthands for the same function.
The function len : (List) — N returns the length of a list. It is defined by

len(nil) :==0
len(z :: L) :=len(L) + 1

The function concat : (List, List) — List takes two lists and returns a single list containing the elements
of the first followed by those of the second. It is defined by

concat(nil, R) := R
concat(x :: L, R) := x :: concat(L, R)

We will use the binary operator “4#” as shorthand for concat.
Concatenation is arguably the most important operation on lists, which is why we have defined a special
operator for it. It is important to note that this operation has the following mathematical properties:

Identity L 4 nil = L = nil 4 L for any list L.
Associativity (L #+ R) #+ S =L # (R4 S) for any lists L, R, S.

Going forward, we will use these facts without any explanation. In particular, due to associativity, we can
leave out parentheses (..) when concatenating multiple lists.



The function rev : (List) — List returns the same numbers but in reverse order. It is defined by

rev(nil) := nil
rev(z :: L) := rev(L) # (z :: nil)

This function runs in ©(n?) time, but a tail-recursive equivalent exists that runs in linear time.

In a non-nil list, we have easy access to the first element (head) and the rest (tail). We can also define
functions to find the last element and the initial part before the last. The functions last : (List) — A and
init : (List) — List do so and are defined by

last(z :: nil) ==z
last(z :: y :: L) :=last(y :: L)

init(z :: nil) := nil
init(x ::y = L) :=x v init(y = L)

Note that both functions are undefined on nil.

We often want to know whether a list contains a particular element. The function contains : (List,Z) — B
does this. It is defined by

contains(nil, y) := false
contains(z :: L, y) := true ife=y
contains(x :: L, y) := contains(L, y) ifx #y

A closely related function remove : (List,Z) — List returns a list with all instances of a given value
removed. It is defined by

remove(nil, y) := nil
remove(x :: L, y) := remove(L, y) ife=y

remove(x :: L, y) :=x :: remove(L, y) ifz #y



