
CSE 331: Software Design & Implementation Winter 2026

Quiz Section 6: Midterm Review – Solutions

Task 1 – I Couldn’t Square Less [9 pts]

We plan to provide the following method:

/**

* Calculates the integer square root of n.

* ...

* @return The integer k such that (k-1)^2 < n <= k^2

*/

public static int isqrt(int n);

a) When n is a perfect square, the integer k from the spec will satisfy k2 “ n. This tells us that
k “

?
n. But how does k relate to

?
n when n is positive but not a perfect square?

k is
?
n rounded up to the nearest integer.

b) Keeping in mind your answer to (a), what is an another, equally reasonable but incomparable, way
to specify this function? Your answer should leave the precondition unchanged and not change the
postcondition in any case where n is a perfect square.

Write the @return statement for this new specification below.

@return The integer k such that k*k <= n < (k+1)*(k+1)

c) This specification precisely defines the return value for valid inputs, but it does not make sense when
n is not positive. Give two distinct ways of turning this into a specification that fully defines the
behavior for all integer inputs, now including non-positive values.

Your two specifications must still return the value described in the original specification when n

is positive but they should be incomparable specifications overall.

@throws IllegalArgumentException if n <= 0

@return The integer k such that (k-1)^2 < n <= k^2

@return The integer k such that (k-1)^2 < n <= k^2, OR -1 if n <= 0

1

d) Part (c) said that the spec does not make sense when n is not positive. Negative values of n would
not work since their square roots are complex, but why does it not make sense when n is 0?

Every integer k has 0 ď pk ´ 1q2. Thus, we cannot have pk ´ 1q2 ă n “ 0.

e) Give a third distinct specification that is weaker than both of your specifications from part (c).

Again, it must still return the value described in the original specification when n is positive.

@requires n >= 1

@return The integer k such that (k-1)^2 < n <= k^2

2

Task 2 – I Plead The Flip [15 pts]

The function negate : pListq Ñ List takes in a list and flips the sign of every value in the List. It is
defined recursively as follows:

negatepnilq :“ nil

negatepx :: Lq :“ p´xq :: negatepLq

The function twice : pListq Ñ List takes a list as input and returns a list in which element has been
doubled. It is defined as follows:

twicepnilq :“ nil

twicepx :: Lq :“ 2x :: twicepLq

Using these definitions, prove the following claim by induction on S:

negateptwicepSqq “ twicepnegatepSqq

Define P pSq to be the claim that negateptwicepSqq “ twicepnegatepSqq. We will prove this
by structural induction.

Base Case (nil). We can see that

negateptwicepnilqq

“ negatepnilq def of twice

“ nil def of negate

“ twicepnilq def of twice

“ twicepnegatepnilqq def of negate

Inductive Hypothesis. Suppose that negateptwicepLqq “ twicepnegatepLqq holds for some
list L.

Inductive Step. We must prove that P px :: Lq holds for any x : Z.

negateptwicepx :: Lqq

“ negatep2x :: twicepLqq def of twice

“ ´2x :: negateptwicepLqq def of negate

“ ´2x :: twicepnegatepLqq Inductive Hypothesis

“ twicep´x :: negatepLqq def of twice

“ twicepnegatepx : Lqq def of negate

Conclusion. P pSq holds for any list S by structural induction.

3

Task 3 – Don’t Set The Small Stuff [10 pts]

Answer the following questions about the specification of BoundedIntSet starting on the third-to-last
page.

a) Fill in the following table showing the abstract state resulting after each operation on the left is
performed, starting from the abstract state shown in the previous row. In the right column, show
the result of calling contains(9) in the state listed in the middle column of that row.

p1, 10, 3 :: 9 :: nilq S.contains(9)

S.add(1) p1, 10, 1 :: 3 :: 9 :: nilq T

S.add(2) p1, 10, 2 :: 1 :: 3 :: 9 :: nilq T

S.remove(3) p1, 10, 2 :: 1 :: 9 :: nilq T

S.remove(9) p1, 10, 2 :: 1 :: nilq F

S.add(9) p1, 10, 9 :: 2 :: 1 :: nilq T

b) Write a complete JavaDoc specification for the method remove, starting with the English description
provided on the second-to-last page.

You can assume that the mathematical function remove : pZ, Listq Ñ List is already defined as
follows and is well-known to the client:

removepn, nilq :“ nil

removepn,m :: Lq :“ removepn,Lq if m “ n

removepn,m :: Lq :“ m :: removepn,Lq if m ­“ n

/**

* Returns a triple with the same bounds but a new list that no longer

* contains n.

* @param n The integer to remove from the set

* @returns (min, max, remove(n, elems))

*/

4

Task 4 – Does a Bear Loop In the Woods? [15 pts]

The function add-const : pZ, Listq Ñ List returns a list with the given constant value added to every
element in the list. It is defined as follows:

add-constpx, nilq :“ nil

add-constpx,m :: Lq :“ px ` mq :: add-constpx, Lq

Also, recall the function sum : pListq Ñ Z, which is defined by:

sumpnilq :“ 0

sumpx :: Lq :“ x ` sumpLq

The following loop claims to compute the sum of a list where five has been added to every element
without actually constructing a new list:

ttL “ L0 uu

int total = 0;

ttP1 : L “ L0 and total “ 0 uu

tt Inv : sumpadd-constp5, L0qq “ total ` sumpadd-constp5, Lqq uu

while (L != null) {
ttP2 : sumpadd-constp5, L0qq “ total ` sumpadd-constp5, Lqq and L “ L.hd :: L.tl uu

ttQ2 : sumpadd-constp5, L0qq “ L.hd ` 5 ` total ` sumpadd-constp5, L.tlqq uu

total = L.hd + 5 + total;

tt sumpadd-constp5, L0qq “ total ` sumpadd-constp5, L.tlqq uu

L = L.tl;

tt sumpadd-constp5, L0qq “ total ` sumpadd-constp5, Lqq uu

}
ttP3 : sumpadd-constp5, L0qq “ total ` sumpadd-constp5, Lqq and L “ nil uu

ttQ : sumpadd-constp5, L0qq “ total uu

This code assumes that lists are represented with the same Java class as used in lecture:

public class List {

public int hd;

public List tl;

}

a) Use forward reasoning to fill in assertion P1 above.

b) Use forward reasoning to fill in assertion P3 above.

c) Use backward reasoning to fill in assertion Q2 above.

Continued on the next page. . .

5

d) Prove that the invariant is true initially by showing that P1 implies the invariant.

sumpadd-constp5, L0qq “ 0 ` sumpadd-constp5, L0qq

“ total ` sumpadd-constp5, L0qq since total “ 0

“ total ` sumpadd-constp5, Lqq since L “ L0

e) Prove that the postcondition Q holds by showing that P3 implies Q.

sumpadd-constp5, L0qq “ total ` sumpadd-constp5, Lqq

“ total ` sumpadd-constp5, nilqq since L “ nil

“ total ` sumpnilq def of add-const

“ total def of sum

f) Prove that the body of the loop preserves the invariant by showing that P2 implies Q2.

sumpadd-constp5, L0qq “ total ` sumpadd-constp5, Lqq

“ total ` sumpadd-constp5, L.hd :: L.tlq since L “ L.hd :: L.tl

“ total ` sumppL.hd ` 5q :: add-constp5, L.tlq def of add-const

“ total ` L.hd ` 5 ` sumpadd-constp5, L.tlq def of sum

6

Task 5 – A Positive FeedStack Loop [10 pts]

Answer the following questions about the specification of MutableIntStack class on the last page:

a) Explain why the specifications of push and pop tell us that this ADT satisfies the LIFO principle
(the Last element In is the First element Out).
I.e., how does calling pop and push satisfy the principle?

A push followed by a pop will remove the element that was pushed, so the last element
in (pushed) is the first element out (popped).

b) In what ways are the specifications of pop and peek the same?
Hint: Compare their tags :)

They both require the stack to be non-empty and return the same value.

c) In what ways are the specifications of pop and peek different?
Hint: Think about how the object will be affected by a call to pop vs. a call to peek.

They differ in the resulting abstract state (shorter vs unchanged).

d) Suppose that S is an instance of this class whose abstract state is 7 :: 3 :: nil. What is the abstract
state of S after the following code:

T.pop();

T.push(5);

T.push(5);

T.push(1);

T.pop();

The resulting state would be 5 :: 5 :: 3 :: nil.

e) Consider the following implementation of a helper function, pushIfPositive:

public static void pushIfPositive(MutableIntStack stack, int n) {

if (n > 0) {

stack.push(n);

}

}

Which of the following specifications is the weakest valid specification that it satisfies?

@modifies n and @effects stack0 = n :: stack

@modifies stack and @effects stack0 = n :: stack

@modifies stack and @effects stack0 = stack

@modifies stack Correct

The last one is the weakest as it is the only valid specification (note: adding to @modifies
weakens specification strength).

7

Interface for task 3:
Note that this interface is similar to MutableBoundedIntSet from HW5 task 4 but this version is not
mutable and some specifications differ slightly.

/**

* Represents a triple (min, max, elems), where min and max are integers,

* elems is a list of integers, and every integer x in the list elems

* satisfies min <= x <= max.

*/

public interface BoundedIntSet {

/**

* Determines whether n is in the list

* @param n the integer to look for

* @returns contains(n, elems), where

* contains(n, nil) := false

* contains(n, m :: L) := true if m = n

* contains(n, m :: L) := contains(n, L) if m != n

*/

public boolean contains(int n);

/**

* Return a triple with the same bounds but a new list that contains n

* as well (if it is within the bounds).

* @param n the integer to add to the list

* @returns (min, max, n :: elems) if min <= n <= max

* (min, max, elems) if n < min or max < n

*/

public BoundedIntSet add(int n);

/**

* Returns a triple with the same bounds but a new list that no longer

* contains n.

* ... (To be written in Task 3 part b) ...

*/

public BoundedIntSet remove(int n);

}

8

Class for task 3: The following class will implement BoundedIntSet using one the concrete represen-
tation shown.

public class BoundedIntSetImpl implements BoundedIntSet {

// AF: obj = (this.min, this.max, this.vals)

// RI: all integers in this.vals between this.min and this.max (inclusive)

private final int min;

private final int max;

private final int[] vals;

public BoundedIntSet(int min, int max, int[] vals) {

this.min = min;

this.max = max;

this.vals = vals;

}

}

9

Interface for task 5:

/**

* Represents a mutable list of integers that can be only changed by adding to

* or removing from the front.

*/

public interface MutableIntStack {

/**

* Returns the size of the list

* @returns len(obj)

*/

public int size();

/**

* Adds a new integer to the front of the list

* @param n the integer to add

* @modifies obj

* @effects obj = n :: obj_0

*/

public void push(int n);

/**

* Removes and returns the front element from the list

* @requires len(obj) != 0

* @modifies obj

* @effects obj_0 = n :: obj

* @returns n

*/

public int pop();

/**

* Returns the front element from the list

* @requires len(obj) != 0

* @returns n where obj = n :: L

*/

public int peek();

}

10

