CSE 331: Software Design & Implementation

Quiz Section 5: Mutation — Solutions

Task 1 — Two Sides of the Same Join

Winter 2026

[12 pts]

We plan to provide the following method:

VAL

* Join the two given lists into a single one
* Q@requires first != null, second != null

* ...

*/

public static List<Integer> join(List<Integer> first, List<Integer> second);

To do so, we need to fill in the rest of the specification.
We are considering the following alternatives:

Q@return first ++ second

Omodifies first
Q@return first ++ second

O@modifies first, second
Q@return first ++ second

Omodifies first
Qeffects first = first_O0 ++ second
Q@return first_O0 ++ second

@modifies first, second
Qeffects first = first_0 ++ second
Q@return a list

// Spec

// Spec

// Spec

// Spec

// Spec

a) Fill in the following table explaining the relationships between each pair of specifications. Write an
“S" for if the spec on left (the row) is stronger than the name on top (the column), a “W" if it is
weaker, and a "—" if they are incomparable.

A/B|C| D E
A X
B X
C X
D X
E X
A B|C|D]|E
A X|S|S|—|—
B/ W | X |S|—|—
CW|W| X |—|—
D|—|—|— | X]|S
E|l—| —|— | W | X

b) Not every combination of @modifies, @effects, and @return behaviors appearing in the specifi-
cations on the previous page would be sensible. For example, consider the following specification:

Qeffects first = first_0 ++ second
@return second

What is wrong with this specification? Why shouldn’t we use it?

The lack of a @modifies means the specification promises not to modify anything. How-
ever, the @effects states that it will modify first. These statements are contradictory.

Task 2 — Test, Ice, Compression, Elevation [13 pts]

In this problem, we will write tests for various join functions which will also appear on the homework.

a) First, consider a version of join, which does not mutate either argument:

/**

* Join the two given lists into a single one
* Q@requires first != null, second != null

* Qreturns first ++ second

*/

public static List<Integer> join(List<Integer> first, List<Integer> second) {
List<Integer> newlList = new ArrayList<>();
newList.addAll(first);
newList.addAll(second);
return newList;

Fill in the missing parts of the following JUnit test for this version of join.

Q@Test

public void testJoin() {
List<Integer> listl = Arrays.asList(new int[] { 1, 2 });
List<Integer> list2 = Arrays.aslist(new int[] { 3, 4 });
assertEquals(, join(list1l, 1list2));

List<Integer> list3 = Arrays.asList(new int[] { 1 });
List<Integer> list4 = Arrays.asList(new int[] { 2, 3, 4 });
assertEquals(, join(1list3, list4));

}

Both blanks should say Arrays.asList(new int[] {1, 2, 3, 4}).

b) Next, consider the following version of join, which mutates first and does not return anything.

/x*
* Join the two given lists into a single one
* Q@requires first != null, second != null
* Omodifies first
* Qeffects first = first_0 ++ second
*/
public static void join(List<Integer> first, List<Integer> second) {
first.addAll (second);
X

Rewrite the JUnit test above to use this new definition of join on the same inputs as above.

QTest

public void testJoin() {
List<Integer> listl = Arrays.asList(new int[] { 1, 2 });
List<Integer> list2 = Arrays.asList(new int[] { 3, 4 });
join(listl, list2);
assertEquals(Arrays.asList(new int[] {1, 2, 3, 4}), listl);

List<Integer> list3
List<Integer> list4
join(list3, list4d);
assertEquals(Arrays.aslList(new int[] {1, 2, 3, 4}), 1list3);

Arrays.asList(new int[] { 1 });
Arrays.aslList(new int[] { 2, 3, 4 });

c) This version should be longer than before. Why is that the case?

Since the function doesn’t return the answer (it modifies the list instead), you have to
put the call to join on a different line than the call to assertEquals.

d) Finally, consider the version of join, which modifies both first and second.

/*

* Join the two given lists into a single one

* Q@requires first != null, second != null

* Omodifies first, second

* Qeffects first = first_O ++ second_0, second = nil
* Qreturn first

*/
public static List<Integer> join(List<Integer> first, List<Integer> second) {
while (!second.isEmpty()) {
first.add(second.get(0));
second.remove (0) ;
}

return first;

Rewrite the JUnit test again to properly test this new definition of join.

We need to test not only the return value or one mutated object but that both (two!) of the lists
were properly updated. Furthermore, since the implementation uses a loop, we also have to add an
additional test case to get loop coverage

QTest

public void testJoin() {
List<Integer> listl = Arrays.aslist(new int[] { 1, 2 });
List<Integer> list2 = Arrays.asList(new int[] { });
assertEquals(Arrays.aslList(new int[] {1, 2 }), join(listl, 1list2));
assertEquals(Arrays.asList(new int[] {1, 2 }), listl);
assertEquals(Arrays.asList(new int[] {}), list2);

List<Integer> 1list3 = Arrays.asList(new int[] { 3 });
assertEquals(Arrays.asList(new int[] {1, 2, 3 }), join(listl, 1list3));
assertEquals(Arrays.asList(new int[] {1, 2, 3 }), listl);
assertEquals(Arrays.asList(new int[] {}), 1ist3);

List<Integer> list4 = Arrays.asList(new int[] { 4, 5, 6 });

assertEquals(Arrays.asList(new int[] {1, 2, 3, 4, 5, 6}),
join(listl, 1list4));

assertEquals(Arrays.asList(new int[] {1, 2, 3, 4, 5, 6}), listl);

assertEquals(Arrays.asList(new int[] {}), list4);

e) Imagine we replaced the spec for join in part d with the following spec:

/*

* Join the two given lists into a single one
* Q@requires first != null, second != null

* Omodifies first, second

* Qeffects first = first_ 0 ++ second

* Qreturn first

*/
What would we need to change about our test cases?

We now cannot test the mutated value of second since our specification does not specify
how second may be modified. Thus, all we can correctly test (or test at all really) is the
value of first and the return value. This is why writing specifications is important!

The next problem concerns the following ADT:

VAL

Represents a **mutablex* collection of integers.

The order of the integers is important and the "pop" operation promises
to remove the first element in the list.
*/
public class MutableIntSet {
VAL

*
£ 3
* Clients can think of a set as a list of integers that contains no duplicates.
*
*

* Determines whether n is in the list.
* Q@param n the number to look for in the list
* Q@returns contains(n, obj), where

* contains(n, nil) := false

* contains(n, m :: L) := true ifm=n
* contains(n, m :: L) := contains(n, L) if m !=n
*/

public boolean contains(int n);

/**

* Adds n to the list if not already present.
* @param n the number to add to the new list.
* Omodifies obj

* Q@effects obj = add(n, obj_0), where

* add(n, L) := L if contains(n, L)

* add(n, L) :=n :: L if not contains(n, L)

*/
public void add(int n);
/** Removes and returns the first element in the collection. */
public int popQ);

}

Task 3 — Good News and Add News [10 pts]

Answer the following questions about the specification of MutableIntSet. Assume that T is an instance
of this class whose abstract state is 1 :: 2 :: 3 :: nil.

a) Would T.add(3) actually change obj? If not, why is that allowed when it says @modifies obj.

@modifies says that add may or can modify obj but it is not a promise that it does so.
For example, in this case we know obj would not be modified (via its spec) since the list
already contains 3.

b) Now, consider a call T.add(4). Explain how the operation of MutableIntSet.add differs from
that of IntSet.add from Homework 3.

IntSet.add returns n :: obj, whereas MutableIntSet.add actually changes the abstract
state (obj) into that value.

c) What is the abstract state of T after the following code!:

T.add(4);
T.add(2);
T.add(0);

The resulting state would be 0 :: 4 :: 1 ::2:: 3 :: nil.

d) Write a specification for the method pop. It should return the head of the list and change the
abstract state to be the tail of the list.

/%%
* Removes and returns the first element in the collection.
* @requires len(obj) '= 0
* Omodifies obj
* Qeffects obj_0 = n :: obj
* Qreturns n
*/
public int pop();

'This is forward reasoning.

