
CSE 331

Software Design & Implementation

Winter 2026

Section 4 – Floyd Logic

Administrivia

- HW 4 released tonight, due **Wednesday 2/4 at 11:59pm**

Proof By Calculation – Review

- The goal of proof by calculation is to *show* that an assertion is true *given* facts that you already know
- You should **start** the proof with the left side of the assertion and **end** the proof with the right side of the assertion. Each symbol ($=$, $>$, $<$, etc.) connecting each line of the proof is that line's relationship to the **previous line on the proof**
- Only modify one side. Never do work on both sides. We can only work with what you have from the previous line, using definitions and facts.

Structural Induction – Review

- Let $P(S)$ be the claim
- To Prove $P(S)$ holds for any list S , we need to prove two implications: base case and inductive case
 - **Base Case:** prove $P(\text{nil})$
 - Use any known facts and definitions
 - **Inductive Hypothesis:** assume $P(L)$ is true for a $L : \text{List}$
 - Use this in the inductive step ONLY
 - **Inductive Step:** prove $P(x :: L)$ for any $x : Z, L : \text{List}$
 - Direct proof
 - Use known facts and definitions and **Inductive Hypothesis**
- Assuming we know $P(L)$, if we prove $P(x :: L)$, we then prove recursively that $P(S)$ holds for any List

Hoare Triples – Review

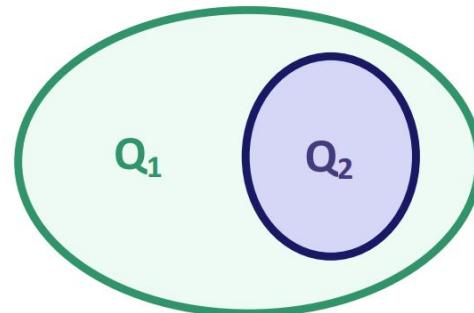
- A **Hoare Triple** has 2 assertions and some code

$$\{\{ P \}\} \\ S$$
$$\{\{ Q \}\}$$

- P is a precondition, Q is the postcondition
 - S is the code
- Triple is “valid” if the code is correct:
 - S takes any state satisfying P into a state satisfying Q
 - Does not matter what the code does if P does not hold initially
 - We use Proof By Calculation to prove our Hoare Triples!

Stronger vs Weaker – Review

- Assertion is stronger iff it holds in a subset of states
 - Stronger assertion implies the weaker one:
If Q_2 is true, Q_1 must also be true, $Q_2 \rightarrow Q_1$



- Different from strength in *specifications*

Question ...

Which is the strongest assertion:

- $x > 3$
- $x \geq 3$
- $x > 3$ and $x \in \{2, 4, 6, 8, 10\}$
- $x > 3$ and $x \% 2 = 0$

Discuss with the person next to you

Question ...

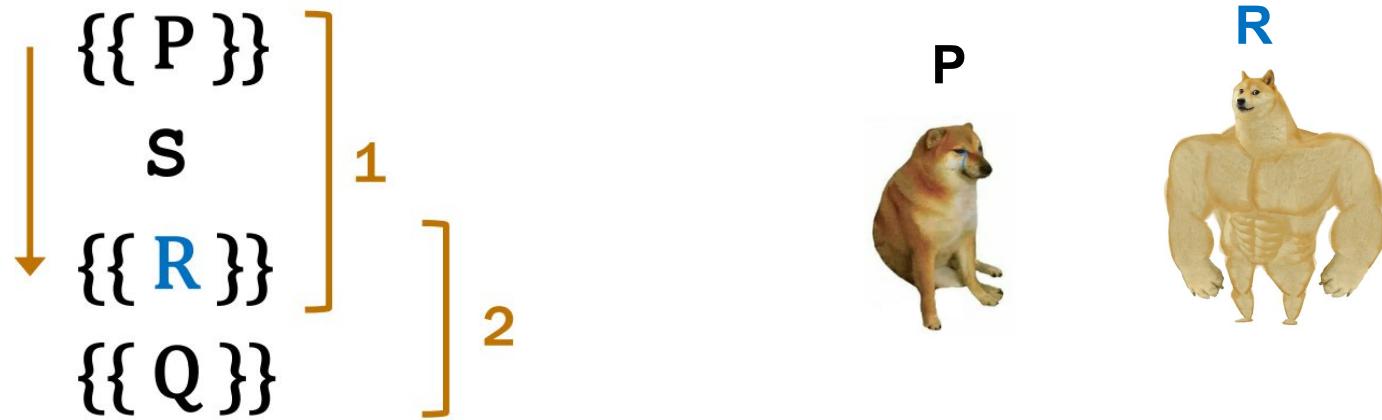
Which is the strongest assertion:

- $x > 3$
- $x \geq 3$
- $x > 3$ and $x \in \{2, 4, 6, 8, 10\}$
- $x > 3$ and $x \% 2 = 0$

Discuss with the person next to you

Forward Reasoning – Review

- Forwards reasoning fills in the postcondition
 - Gives strongest postcondition making the triple valid
- Apply forward reasoning to fill in $\textcolor{blue}{R}$



- Check second triple by proving that $\textcolor{blue}{R}$ implies Q

Forward Reasoning Error Example

```
 {{ x > 1 }}  
x = x + 1;  
 {{ x = x0 + 1 and x0 > 1 }}  
y = 3 * x;  
 {{ x = x0 + 1 and y = 3 * x }}  
z = y + 1;  
 {{ x = x0 + 1 and z = (3 * x) + 1 }}
```

Drops this assertion

What's wrong with these assertions?

Uses subscripts
for an invertible
operation

Simplifies assertions too
early by dropping y variable
relationship to x

Corrected Forward Reasoning Example

```
{ $\{$  x > 1  $\}$ }
```

```
x = x + 1;
```

```
{ $\{$  x - 1 > 1  $\}$ }
```

```
y = 3 * x;
```

```
{ $\{$  x - 1 > 1 and y = 3 * x  $\}$ }
```

```
z = y + 1
```

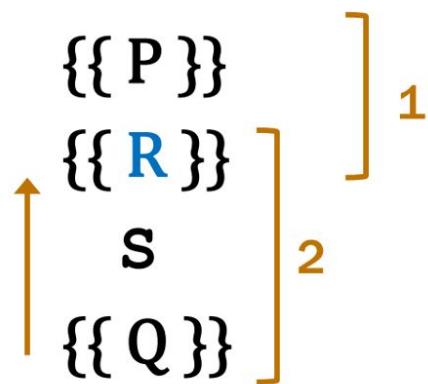
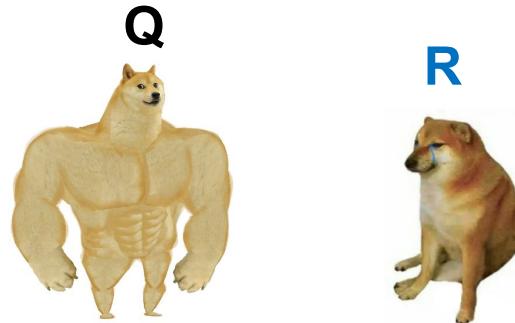
```
{ $\{$  x - 1 > 1 and y = 3 * x and z = y + 1  $\}$ }
```

does not simplify
assertions early or
drop variable
relationships

updates x for this operation rather than
introducing subscripts

Backward Reasoning – Review

- Backwards reasoning fills in preconditions
 - **Just use substitution!**
 - Gives weakest precondition making the triple valid
- Apply backwards reasoning to fill in R



- Check first triple by proving that P implies R

Forward & Backward General Rules

Forward Reasoning:

- After each line of code *update* variables in assertions based on how they were changed by the line of code

Backward Reasoning:

- As you work your way up the code *directly* substitute how variables are modified in the code into your assertions

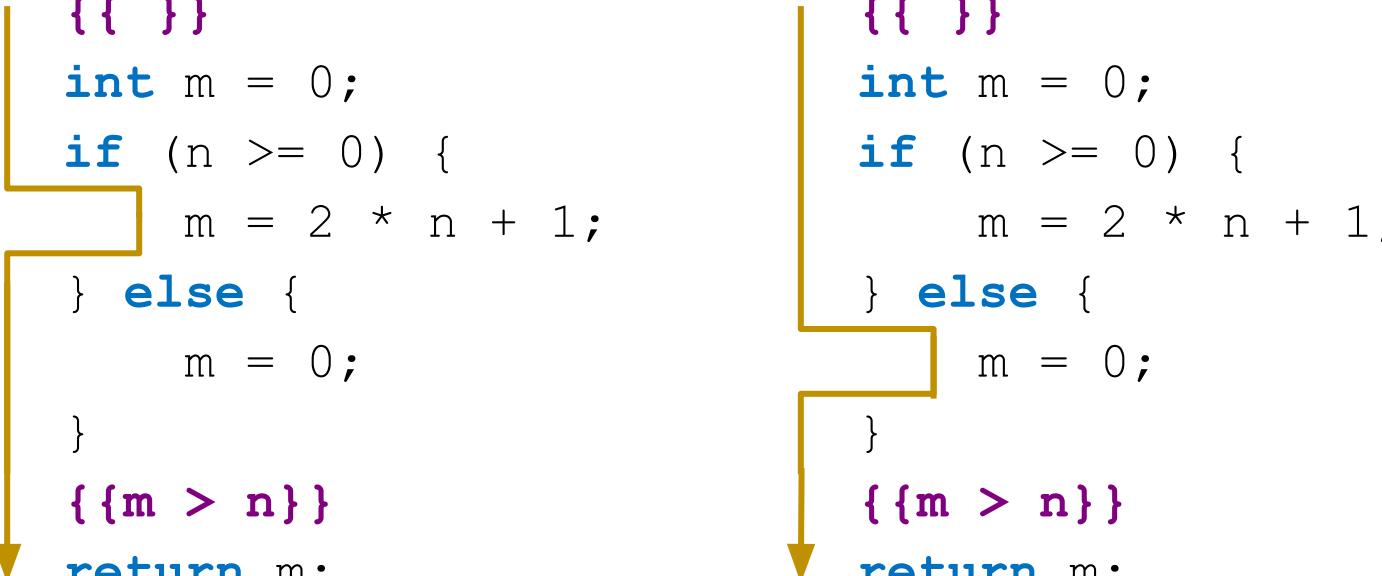
General:

- Do **not** drop or simplify assertions
- Do **not** use subscripts for invertible operations (addition and subtraction are *always* invertible)

Conditionals – Review

- Reason through “then” and “else” branches independently and combine last assertion of both branches with an “or” at the end
- Prove that each implies post condition by cases
- **Note:** this is important for your homework!

```
public static int g(int n) {  
    {{ }}  
    int m = 0;  
    if (n >= 0) {  
        m = 2 * n + 1;  
    } else {  
        m = 0;  
    }  
    {{m > n}}  
    return m;  
}  
}  
{{ }}  
int m = 0;  
if (n >= 0) {  
    m = 2 * n + 1;  
} else {  
    m = 0;  
}  
}  
{{m > n}}  
return m;
```



Loop Invariant – Review

```
 {{Inv: I}}  
while (cond) {  
    S  
}  
           ↑  
           true!  
           ↑  
           true!  
           ↑  
           true!  
           ↑  
           true!
```

- Loop invariant must be true every time at the top of the loop
 - The first time (before any iterations) and for the beginning of each iteration
- Also true every time at the bottom of the loop
 - Meaning it's true immediately after the loop exits
- During the body of the loop (during **S**), it isn't true
- Must use “**Inv**” notation to indicate that it's not a standard assertion

Question

Where is it allowed for a loop invariant not to hold?

- before the loop
- after the loop
- after entering the loop
- before exiting the loop
- during the code execution inside of the loop

Question

Where is it allowed for a loop invariant not to hold?

- before the loop
- after the loop
- after entering the loop
- before exiting the loop
- **during the code execution inside of the loop**