CSE 331
Software Design & Implementation

Winter 2026
Section 4 — Floyd Logic

Administrivia

« HW 4 released tonight, due Wednesday 2/4 at 11:59pm

. —_—— —— IR
— ——— p— o —— e —
L — —— — — —
= h— ——— — - —~——— -
— . - e — pr— -
— ~ . — = a— — — —
-— e —— - — — - - -
- - - - - - -~ -
-
- -
- - - - -
- - -
-~ -
[Y - — - - —_— —— -
- - - - — — -— ———
- - e —— — -
- -— - - - - —— - J— R
- = - - -— - -y - - - - - — -
- -~ o~ - - —ag - —— — - - -
- — — . — - —_
- - — — —— -l - -
s —— P - e - - - - - —
- o p—— - - ~ - - - -
- = — - — - i . -, —
 — - - - .- ~— -~—
— - - - — - -— -
= S - — — - -
— . — — A = _ —_
—_ S — -— — B e —— - P— =
igp— —— - - — - — - p— -

Proof By Calculation — Review

« The goal of proof by calculation is to show that an assertion is
true given facts that you already know

« You should start the proof with the left side of the assertion and
end the proof with the right side of the assertion. Each symbol
(=, >, <, etc.) connecting each line of the proof is that line’s
relationship to the previous line on the proof

« Only modify one side. Never do work on both sides. We can
only work with what you have from the previous line, using
definitions and facts.

Structural Induction — Review

* Let P(S) be the claim

« To Prove P(S) holds for any list S, we need to prove two
implications: base case and inductive case

— Base Case: prove P(nil)
» Use any known facts and definitions

— Inductive Hypothesis: assume P(L) is true for a L: List
« Use this in the inductive step ONLY [2]]

— Inductive Step: prove P(x :: L) forany x : Z, L : List
* Direct proof
« Use known facts and definitions and Inductive Hypothesis

« Assuming we know P(L), if we prove P(x :: L), we then prove
recursively that P(S) holds for any List

Hoare Triples — Review

A Hoare Triple has 2 assertions and some code

{PH
S

{Q}}
— P is a precondition, Q is the postcondition
— Sis the code

» Triple is “valid” if the code is correct:
— S takes any state satisfying P into a state satisfying Q
« Does not matter what the code does if P does not hold
initially
« We use Proof By Calculation to prove our Hoare Triples!

Stronger vs Weaker — Review

* Assertion is stronger iff it holds in a subset of states
— Stronger assertion implies the weaker one:
If Q, is true, Q, must also be true, Q, - Q,

Q,

 Different from strength in specifications

Question ...

Which is the strongest assertion:
e x>3
o x=>3 v

e x>3andx€{24,6,8,10}

o x>3andx%2=0

Discuss with the person next to you

Question ...

Which is the strongest assertion:
o x>3
o x=>3
e x>3andx€{2,46,8,10}
e x>3andx%2=0

Discuss with the person next to you

Forward Reasoning — Review

» Forwards reasoning fills in the postcondition
— Gives strongest postcondition making the triple valid
» Apply forward reasoning to fill in R

{P}} p

ey

— Check second triple by proving that R implies Q

Forward Reasoning Error Example

{{ x>11}}
X = X + 1;
{{ x =x,+1and x,> 1 }}

\

B _ Drops this
i x =X,k 1andy =3 % x}} assertion
z =y + 1j
{{ x = x 1 and z =|(3 * x) + 1 }}
What's wrong with these assertions?
Uses subscripts
for an invertible Simplifies assertions too
operation early by dropping y variable

relationship to x

Corrected Forward Reasoning Example

{{ x > 1
= X + 1;

X

i

y

Z

{{ x -1>\1and vy

>

3 *.X;
{{ x-1>1and y

updates x for this operation rather than
introducing subscripts

b}

3 % X }t+}

3 *x x and z

does not simplify
assertions early or
drop variable
relationships

/

+ 1 }}

Backward Reasoning — Review

« Backwards reasoning fills in preconditions

— Just use substitution!

— Gives weakest precondition making the triple valid
* Apply backwards reasoning to fill in R

{P}]1 Q
(R}

55N

[S 2 ar i

— Check first triple by proving that P implies R

Forward & Backward General Rules

Forward Reasoning:
e After each line of code update variables in assertions based on
how they they were changed by the line of code

Backward Reasoning:
e As you work your way up the code directly substitute how
variables are modified in the code into your assertions

General:

e Do not drop or simplify assertions

e Do not use subscripts for invertible operations (addition and
subtraction are always invertible)

Conditionals — Review

« Reason through “then” and “else” branches independently and
combine last assertion of both branches with an “or” at the end

* Prove that each implies post condition by cases

* Note: this is important for your homework!

public static int g(int n)

{{ }}

int m = 0;

if (n >= 0) {

m= 2 *n + 1;

} else {
m = 0;

}

{{m > n}}

Y return m;

{

{{ }}
int m = 0;
if (n >= 0) {

m=2 *n+ 1;

} else {
m = 0;

}

{{m > n}}

return m;

Loop Invariant — Review

{{Inv: I}}
while (cond) {

S

true!

truel!
true!

1

true!

» Loop invariant must be true every time at the top of the loop

— The first time (before any iterations) and for the beginning of
each iteration

« Also true every time at the bottom of the loop
— Meaning it’s true immediately after the loop exits
» During the body of the loop (during S), it isn’t true

« Must use “Inv” notation to indicate that it's not a standard
assertion

Question

Where is it allowed for a loop invariant not to hold?
e before the loop
e after the loop
e after entering the loop
e Dbefore exiting the loop

e during the code execution inside of the loop

Question

Where is it allowed for a loop invariant not to hold?
e before the loop
e after the loop
e after entering the loop
e Dbefore exiting the loop

e during the code execution inside of the loop

