
CSE 331
Software Design & Implementation

Winter 2026
Section 4 – Floyd Logic

Administrivia

• HW 4 released tonight, due Wednesday 2/4 at 11:59pm

2

Proof By Calculation – Review
• The goal of proof by calculation is to show that an assertion is

true given facts that you already know

• You should start the proof with the left side of the assertion and
end the proof with the right side of the assertion. Each symbol
(=, >, <, etc.) connecting each line of the proof is that line’s
relationship to the previous line on the proof

• Only modify one side. Never do work on both sides. We can
only work with what you have from the previous line, using
definitions and facts.

Structural Induction – Review
• Let P(S) be the claim
• To Prove P(S) holds for any list S, we need to prove two

implications: base case and inductive case

– Base Case: prove P(nil)
• Use any known facts and definitions

– Inductive Hypothesis: assume P(L) is true for a L: List
• Use this in the inductive step ONLY ⤵

– Inductive Step: prove P(x :: L) for any x : Z, L : List
• Direct proof
• Use known facts and definitions and Inductive Hypothesis

• Assuming we know P(L), if we prove P(x :: L), we then prove
recursively that P(S) holds for any List

Hoare Triples – Review
• A Hoare Triple has 2 assertions and some code

{{ P }}
 S
{{ Q }}

– P is a precondition, Q is the postcondition
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

• Does not matter what the code does if P does not hold
initially

• We use Proof By Calculation to prove our Hoare Triples!

Stronger vs Weaker – Review

• Different from strength in specifications

Question …

Which is the strongest assertion:

● x > 3

● x ≥ 3

● x > 3 and x ∈ {2, 4, 6, 8, 10}

● x > 3 and x % 2 = 0

Discuss with the person next to you

Question …

Which is the strongest assertion:

● x > 3

● x ≥ 3

● x > 3 and x ∈ {2, 4, 6, 8, 10}

● x > 3 and x % 2 = 0

Discuss with the person next to you

Forward Reasoning – Review
• Forwards reasoning fills in the postcondition

– Gives strongest postcondition making the triple valid
• Apply forward reasoning to fill in R

– Check second triple by proving that R implies Q

R
P

Forward Reasoning Error Example

{{ x > 1 }}
x = x + 1;
{{ x = x0 + 1 and x0 > 1 }}
y = 3 * x;
{{ x = x0 + 1 and y = 3 * x }}
z = y + 1;
{{ x = x0 + 1 and z = (3 * x) + 1 }}

What’s wrong with these assertions?
Uses subscripts
for an invertible
operation

Drops this
assertion

Simplifies assertions too
early by dropping y variable
relationship to x

Corrected Forward Reasoning Example

{{ x > 1 }}
x = x + 1;
{{ x - 1 > 1 }}
y = 3 * x;
{{ x - 1 > 1 and y = 3 * x }}
z = y + 1
{{ x - 1 > 1 and y = 3 * x and z = y + 1 }}

updates x for this operation rather than
introducing subscripts

does not simplify
assertions early or
drop variable
relationships

Backward Reasoning – Review
• Backwards reasoning fills in preconditions

– Just use substitution!
– Gives weakest precondition making the triple valid

• Apply backwards reasoning to fill in R

– Check first triple by proving that P implies R

R
Q

Forward & Backward General Rules

Forward Reasoning:
● After each line of code update variables in assertions based on

how they they were changed by the line of code

Backward Reasoning:
● As you work your way up the code directly substitute how

variables are modified in the code into your assertions

General:
● Do not drop or simplify assertions
● Do not use subscripts for invertible operations (addition and

subtraction are always invertible)

Conditionals – Review
• Reason through “then” and “else” branches independently and

combine last assertion of both branches with an “or” at the end
• Prove that each implies post condition by cases
• Note: this is important for your homework!

public static int g(int n) {
 {{ }}
 int m = 0;
 if (n >= 0) {
 m = 2 * n + 1;
 } else {
 m = 0;
 }
 {{m > n}}
 return m;
}

 {{ }}
 int m = 0;
 if (n >= 0) {
 m = 2 * n + 1;
 } else {
 m = 0;
 }
 {{m > n}}
 return m;
}

Loop Invariant – Review

• Loop invariant must be true every time at the top of the loop
– The first time (before any iterations) and for the beginning of

each iteration
• Also true every time at the bottom of the loop

– Meaning it’s true immediately after the loop exits
• During the body of the loop (during S), it isn’t true

• Must use “Inv” notation to indicate that it’s not a standard
assertion

true!{{Inv: I}}
while (cond) {
 S
}

true!
true!

true!

Question ….

Where is it allowed for a loop invariant not to hold?

● before the loop

● after the loop

● after entering the loop

● before exiting the loop

● during the code execution inside of the loop

Question ….

Where is it allowed for a loop invariant not to hold?

● before the loop

● after the loop

● after entering the loop

● before exiting the loop

● during the code execution inside of the loop

