CSE 331
Software Design & Implementation

Winter 2026
Section 3 —ADTs

Administrivia

{0 HW3 released tonight - Due next Wed 11 :59pm}

Specifications for ADTs — Review

e New Terminology for specifying ADTs:
o Abstract State / Representation (Math)
m How clients should understand the object
m Ex: List(nil or cons)

o Concrete State / Representation (Code)
m Actual fields of the record and the data stored
m EX: public class List {
final int hd;
final List tl;

State Representations

e We've had different abstract and concrete types all along!
o in our math, List is an inductive type (abstract)
o in our code, List is a class with two fields (concrete)

e Term “object” (or “obj”) will refer to abstract state
o “object” means mathematical object (representative of
the class as a whole or as an idea)
o “obj” is the mathematical value that the record represents
(similar to a specific instance of a class)

Internally Documenting ADTs — Review

Abstract Function (AF) — defines what abstract state the field
values represent

— Maps field values — the object they represent
— Output is math, this is a mathematical function

Representation Invariants (Rl) — facts about the field values that
must always be true

— Constructor must always make sure Rl is true at runtime
— Can assume Rl is true when reasoning about methods
— AF only needs to make sense when RI holds

— Must ensure that Rl always holds

Documenting ADTs — Example

// A list of integers that can retrieve the last element in 0(1)
interface FastlList {

/** Talk about functions in
* Returns the object as a regular list terms of the abstract state
* @returns obj <— (obj)
k
Lést tolList(); Hide the representation
} details (i.e. real fields) from
the client

class FastlLastlList implements FastList {
// RI: this.last = last(this.list);
// AF: obj = this.list;

// @returns last(obj)
int getLast() {
return this.last;

}s

