
CSE 331
Software Design & Implementation

Winter 2026
Section 3 – ADTs

Administrivia

● HW3 released tonight - Due next Wed 11:59pm

2

Specifications for ADTs – Review

● New Terminology for specifying ADTs:
○ Abstract State / Representation (Math)

■ How clients should understand the object
■ Ex: List(nil or cons)

○ Concrete State / Representation (Code)
■ Actual fields of the record and the data stored
■ Ex:

State Representations

● We’ve had different abstract and concrete types all along!
○ in our math, List is an inductive type (abstract)
○ in our code, List is a class with two fields (concrete)

● Term “object” (or “obj”) will refer to abstract state
○ “object” means mathematical object (representative of

the class as a whole or as an idea)
○ “obj” is the mathematical value that the record represents

(similar to a specific instance of a class)

Internally Documenting ADTs – Review
Abstract Function (AF) – defines what abstract state the field
values represent

– Maps field values → the object they represent
– Output is math, this is a mathematical function

Representation Invariants (RI) – facts about the field values that
must always be true

– Constructor must always make sure RI is true at runtime
– Can assume RI is true when reasoning about methods
– AF only needs to make sense when RI holds
– Must ensure that RI always holds

// A list of integers that can retrieve the last element in O(1)
interface FastList {
 /**
 * Returns the object as a regular list
 * @returns obj
 */
 List toList();
}

Documenting ADTs – Example

class FastLastList implements FastList {
 // RI: this.last = last(this.list);
 // AF: obj = this.list;

 // @returns last(obj)
 int getLast() {
 return this.last;
 };
}

Hide the representation
details (i.e. real fields) from
the client

Talk about functions in
terms of the abstract state
(obj)

