
CSE 331: Software Design & Implementation Winter 2026

Quiz Section 2: Proofs and Testing – Solutions

Task 1 – Calc You Later [12 pts]

Let a, b, c, d, e be integers. Complete each of the following proofs by calculation.
Include a justification on every step where a given fact is used. You can skip such an explanation

only if the claim written in that step is itself, literally a known fact. It is also fine to cite a fact that is
equivalent (via simple algebra) to a known fact. You do not need to cite algebra.

a) Given that a “ 1 and b “ 1, it follows that a “ 2b ´ 1.

a “ 1

“ 2 ´ 1

“ 2 ¨ 1 ´ 1

“ 2b ´ 1 since b “ 1

b) Given that a “ 1, b “ 2a ´ 1, and c ą 0, it follows that pb ´ 1q2 ă c.

pb ´ 1q2 “ p2a ´ 1 ´ 1q2 since b “ 2a ´ 1

“ p2a ´ 2q2

“ p2 ¨ 1 ´ 2q2 since a “ 1

“ 02

“ 0

ă c since c ą 0

c) Given that d “ b ` 1, c “ a ´ 8, and e “ a ` 8b, it follows that e “ c ` 8d.

e “ a ` 8b

“ c ` 8 ` 8b since a “ c ` 8

“ c ` 8 ` 8pd ´ 1q since b “ d ´ 1

“ c ` 8 ` 8d ´ 8

“ c ` 8d

d) Given that b “ 2a ´ 1, d “ a2, and d ` b ` 2 ă c, it follows that pa ` 1q2 ă c.

pa ` 1q2 “ a2 ` 2a ` 1

“ a2 ` 2a ´ 1 ` 2

“ a2 ` b ` 2 since b “ 2a ´ 1

“ d ` b ` 2 since d “ a2

ă c since d ` b ` 2 ă c

1



Task 2 – Absolutely Positive [6 pts]

Let x be an integer and L a list. Complete the following proof by cases.
Your individual calculations should include explanations as in the previous problems. When citing

a function definition that uses a side condition, your explanation must not only say which function’s
definition is being used but also what side condition is known to hold so that the reader can see what
line of the definition you are referring to.

Let abs : Z Ñ Z be defined as follows:

abspxq “ ´x if x ă 0

abspxq “ x if x ě 0

Prove that abspabspxqq “ abspxq.

Suppose that x ă 0. Then, we can see that

abspabspxqq “ absp´xq def of abs (since x ă 0)

“ ´x def of abs (since ´x ą 0)

“ abspxq def of abs (since x ă 0)

Now, suppose that x ě 0. Then we can see that

abspabspxqq “ abspxq def of abs (since x ě 0)

These two cases are exhaustive, so we have proven the claim holds in general.

2



Task 3 – Keeping It Cool [8 pts]

The functions keep, skip : pListq Ñ List remove half the elements in a list. These two functions keep
and skip every other element of the passed in list. The keep function includes the first element but
skips the one after it, while skip drops the first element but keeps the one after that. They are defined
formally as follows:

keeppnilq “ nil

keeppx :: Lq “ x :: skippLq

skippnilq “ nil

skippx :: Lq “ keeppLq

Also, recall the function echo : pListq Ñ List, which was defined in class as follows:

echopnilq “ nil

echopx :: Lq “ x :: x :: echopLq

and the function sum : pListq Ñ N, which was defined in class as follows:

sumpnilq “ 0

sumpx :: Lq “ x ` sumpLq

You will use these functions in the problem below.

Prove that sumpskippechopLqqq “ sumpLq holds by structural induction on L.

Define P pLq to be the claim sumpskippechopLqqq “ sumpLq. We will prove that this holds
for all values of L by structural induction.

Base Case. We can see that P pnilq holds as follows:

sumpskippechopnilqqq “ sumpskippnilqq def of echo

“ sumpnilq def of skip

Inductive Hypothesis. Suppose that P pLq holds for some list of integers L.

Inductive Step. Let x be an arbitrary integer. We can see that P px :: Lq holds as follows:

sumpskippechopx :: Lqqq “ sumpskippx :: x :: echopLqqq def of echo

“ sumpkeeppx :: echopLqqq def of skip

“ sumpx :: skippechopLqqq def of keep

“ x ` sumpskippechopLqqq def of sum

“ x ` sumpLq Ind. Hyp.

“ sumpx :: Lq def of sum

Conclusion. P pLq holds for all lists of integers L by structural induction.

3



Task 4 – The Test-Laid Plans [12 pts]

For each of the following functions, state the number of tests required to meet our coverage requirements
and explain why that is the required number.

Then, describe a specific set of tests to use (with the same number of tests you as said before).
Describe each test by giving the input (identify a specific input rather than saying, e.g., ”some positive
number”), stating which portion of the function it tests, and explaining why our rules require that test.

a) public static int f(int n) {

if (n < 0) {

return -2 * n;

} else {

return 3 * n;

}

}

This function requires 2 tests to achieve statement coverage, one with n ă 0 and one with
n ě 0. Those values will also give us branch coverage. Loop coverage holds vacuously.

Particular tests would be fp´1q “ 2 for the top branch and fp2q “ 4 for the bottom.

b) public static int h(int n) {

if (n <= 0) {

return 1;

} else {

return 2 + h(n / 3);

}

}

This function requires 3 tests to achieve loop coverage. The same three tests can also
provide statement and branch coverage.

Valid tests would be hp0q “ 1 for 0 iterations, hp1q “ 3 for 1 iteration, and hp3q “ 5
for 2 iterations.

4


