

---

# CSE 331

# Software Design & Implementation

Winter 2026

Section 2 - Testing and Proofs

# Administrivia

---

- HW2 will be released later tonight and is due next **Wednesday @ 11:59pm!**



# Proof By Calculation Reminders

---

- The goal of proof by calculation is to *show* that an assertion is true *given* facts that you already know
- You should **start** the proof with either the left or the right side of the assertion and **end** the proof with the other side of the assertion.
- Every symbol ( $=$ ,  $>$ ,  $<$ , etc.) connecting each line of the proof is the current line's relationship to the previous line in the proof (not any other lines)
- Only modify one side
- **Every** line requires justification (except for algebraic manipulations)

# Proof By Calculation - Example

---

```
// Inputs x and y are positive integers
// Returns a positive integer.

public static int f(int x, int y) {
    return x * y;
}
```

- Known facts “ $x \geq 1$ ” and “ $y \geq 1$ ”
- Correct if the return value is a positive integer

$$\begin{aligned}x * y &\geq x * 1 \text{ since } y \geq 1 \\&\geq 1 * 1 \text{ since } x \geq 1 \\&= 1\end{aligned}$$

- Calculation shows that  $x * y \geq 1$

# Proof By Calculation - Citing Functions

---

$$\text{sum}(\text{nil}) := 0$$

$$\text{sum}(x :: L) := x + \text{sum}(L)$$

- Know “ $a \geq 0$ ”, “ $b \geq 0$ ”, and “ $L = a :: b :: \text{nil}$ ”
- Prove the “ $\text{sum}(L)$ ” is non-negative

$$\begin{aligned}\text{sum}(L) &= \text{sum}(a :: b :: \text{nil}) && \text{since } L = a :: b :: \text{nil} \\ &= a + \text{sum}(b :: \text{nil}) && \text{def of sum} \\ &= a + b + \text{sum}(\text{nil}) && \text{def of sum} \\ &= a + b && \text{def of sum} \\ &\geq 0 + b && \text{since } a \geq 0 \\ &\geq 0 && \text{since } b \geq 0\end{aligned}$$

# Proof By Calculation Bad Example

Suppose we have the facts:  $x = 3$ ,  $y = 4$ ,  $z > 5$  and we want to use proof by calculation to prove  $x^2 + y^2 < z^2$ . Our proof by calculation would look like this:

|             |                     |                                |
|-------------|---------------------|--------------------------------|
| $x^2 + y^2$ | $< z^2$             | beginning of a backwards proof |
| 0           | $< z^2 - x^2 - y^2$ |                                |
| 0           | $< z^2 - 3^2 - y^2$ | since $x = 3$                  |
| 0           | $< z^2 - 3^2 - 4^2$ | since $y = 4$                  |
| 0           | $< z^2 - 25$        |                                |
| 25          | $< z^2$             |                                |
| 5           | $<  z $             |                                |

Since  $z > 5$ , we know  $x^2 + y^2 < z^2$  by above.

Manipulates  
both sides of the  
equation

Not a single  
chain of  
equalities

What is wrong with this proof?

doesn't end with right  
side of the assertion ( $z^2$ )

# Proof by Calculation Bug: Explanation

---

The previous proof is an example of *Circular Reasoning*. We begin the proof with the conclusion manipulating both sides until we reach one of the given facts.

Just because we can prove one direction does **not** mean the other direction necessarily holds.

We must always start from what we know and end with what we want to prove.



**Facts → Conclusion**



**Conclusion → Facts**



# Proof By Calculation Example Correct

Suppose we have the facts:  $x = 3$ ,  $y = 4$ ,  $z > 5$  and we want to use proof by calculation to prove  $x^2 + y^2 < z^2$ . Our proof by calculation would look like this:

$$\begin{aligned} x^2 + y^2 &= 3^2 + y^2 && \text{since } x = 3 \\ &= 3^2 + 4^2 && \text{since } y = 4 \\ &= 25 \\ &= 5^2 \\ &< z^2 \end{aligned}$$

note that each line shows the relationship *only* to the previous line

end with right side of assertion



start with left side of assertion

note that every line has justification (except for algebraic manipulations)

# Defining Functions By Cases – Review

---

- Sometimes we want to define functions by cases
  - **Ex:** define  $f(n)$  where  $n : \mathbb{Z}$

$$\begin{aligned} f(n) &:= 2n + 1 & \text{if } n \geq 0 \\ f(n) &:= 0 & \text{if } n < 0 \end{aligned}$$

- To use the definition  $f(n)$ , we need to know if  $n > 0$  or not
  - This new code structure requires a new proof structure

# Proof By Cases – Review

---

- Split a proof into cases:
  - **Ex:**  $a = \text{True}$  and  $a = \text{False}$  or  $n \geq 0$  and  $n < 0$
  - These cases needs to be *exhaustive*
- **Ex:** 
$$\begin{aligned} f(n) &:= 2n + 1 && \text{if } n \geq 0 \\ f(n) &:= 0 && \text{if } n < 0 \end{aligned}$$

Prove that  $f(n) \geq n$  for any  $n : \mathbb{Z}$

## Case $n \geq 0$ :

$$\begin{aligned} f(n) &= 2n + 1 && \text{def of } f \text{ (since } n \geq 0) \\ &> n && \text{since } n \geq 0 \end{aligned}$$

## Case $n < 0$ :

$$\begin{aligned} f(n) &= 0 && \text{def of } f \text{ (since } n < 0) \\ &\geq n && \text{since } n < 0 \end{aligned}$$

Since these 2 cases are *exhaustive*,  
 $f(n) \geq n$  holds in general

# Structural Induction – Review

---

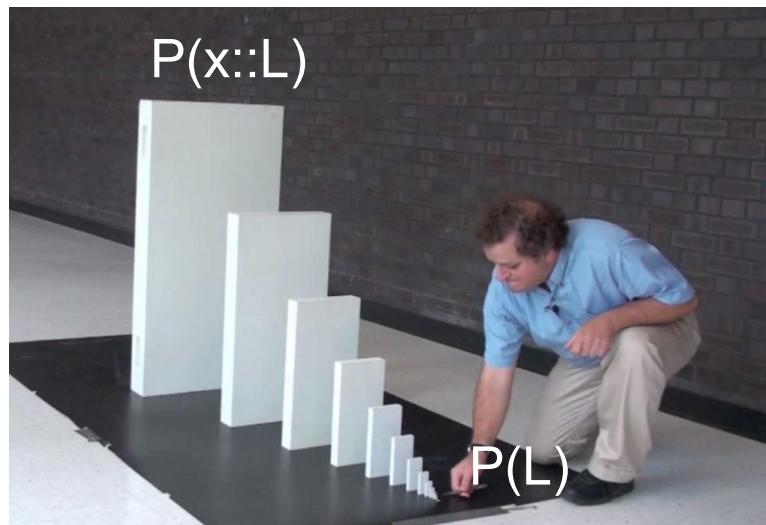
- Let  $P(S)$  be the claim
- To Prove  $P(S)$  holds for any list  $S$ , we need to prove two implications: base case and inductive case
  - **Base Case:** prove  $P(\text{nil})$ 
    - Use any known facts and definitions
  - **Inductive Hypothesis:** assume  $P(L)$  is true for a  $L : \text{List}$ 
    - Use this in the inductive step ONLY 
  - **Inductive Step:** prove  $P(x :: L)$  for any  $x : Z, L : \text{List}$ 
    - Direct proof
    - Use known facts and definitions and **Inductive Hypothesis**
- Assuming we know  $P(L)$ , if we prove  $P(x :: L)$ , we then prove recursively that  $P(S)$  holds for any List

# Structural Induction - 331 Format

---

The following is the structural induction format we recommend for using in your homework (the staff solution also follows this format)

- 1) **Introduction** - define  $P(S)$  to be what we are trying to prove
- 2) **Base Case** - show  $P(\text{nil})$  holds
- 3) **Inductive Hypothesis** - assume  $P(L)$  is true for an arbitrary list
- 4) **Inductive Step** - show  $P(x :: L)$  holds
- 5) **Conclusion** - “We have shown that  $P(S)$  holds for any list”



# Review - Testing Heuristics

---

- **Statement Coverage**
  - Test every executable statement reachable by an allowed input
- **Branch Coverage**
  - For every conditional, test all branches for allowed inputs
- **Loop Coverage**
  - Every loop/recursive call must be tested on 0, 1, any 2+ iterations for allowed inputs
- **Exhaustive Testing**
  - Test all possible inputs for functions with  $\leq 10$  allowed inputs

[Notes on Testing Requirements](#)