CSE 331
Software Design & Implementation

Winter 2026
Section 2 - Testing and Proofs

UW CSE 331 Winter 2026

Administrivia

« HW2 will be released later tonight and is due next
Wednesday @ 11:59pm!

Proof By Calculation Reminders

« The goal of proof by calculation is to show that an assertion is
true given facts that you already know

« You should start the proof with either the left or the right side of
the assertion and end the proof with the other side of the
assertion.

- Every symbol (=, >, <, etc.) connecting each line of the proof is
the current line’s relationship to the previous line in the proof
(not any other lines)

« Only modify one side

« Every line requires justification (except for algebraic
manipulations)

Proof By Calculation - Example

// Inputs x and y are positive integers
// Returns a positive integer.
public static int f(int x, int y) {
return x * y;
Iy
e Known facts x=1"and “y =2 1”
e Correct if the return value is a positive integer

*

Xx*y 2 x*1 sincey =1
> 1*1 sincex=1

= 1

e (Calculation shows thatx *y = 1

Proof By Calculation - Citing Functions

sum(nil) =0
sum(x :L) = x+sum(L)

e Know“a=20" “b=20",and“L=a::b:nil’

e Prove the “sum(L)” is non-negative

sum(L) =sum(a :: b :: nil) sinceL=a: b :nil
= a + sum(b :: nil) def of sum
= a+ b+ sum(nil) def of sum
=a+b def of sum
2 0+b sinceaz=0
> 0 sinceb=20

Proof By Calculation Bad Example

Suppose we have the facts X = 3

y =4, z> 5 and we want to use proof

by calculation to prove x? + y? < 72 Our proof by calculation would look

like this:

e

Manipulates
both sides of the

equation

What is wrong with this proof?

Since z > 5, we know x?+y?<z? by above.

X2 +y? | <72 beginning of a backwards proof

0 <z2-x2-y2

0 < z2 - 32 - y2 since x = 3

0 sincey =4

0 < _ Not a single
25 chain of

5 < |z| equalities

doesn’t end with right
side of the assertion (z?)

Proof by Calculation Bug: Explanation

The previous proof is an example of Circular Reasoning. We begin
the proof with the conclusion manipulating both sides until we reach
one of the given facts.

Just because we can prove one direction does not mean the other
direction necessarily holds.

We must always start from what we know and end with what we
want to prove.

Facts — Conclusion °

Conclusion — Facts Q

Proof By Calculation Example Correct

Suppose we have the facts: x =3, y =4, z> 5 and we want to use
proof by calculation to prove x? + y2 < z2. Our proof by calculation

would look like this: note that each line
X2 +y2 =32+y? since x = 3 shows the
/ = 32 + 42 sincey=4 __— relationship only to
= 25 the previous line
start with left side of = 52
assertion < 72 sincez> 5
note that every line
has
- _ justification (except for
end with right side of algebraic

assertion manipulations)

Defining Functions By Cases — Review

« Sometimes we want to define functions by cases
— Ex: define f(n) wheren : Z

f(n) :=2n+1 ifn=0
f(n) :==0 ifn<O

— To use the definition f(n), we need to know if 1 > 0 or not
— This new code structure requires a new proof structure

Proof By Cases — Review

« Split a proof into cases:
— Ex:a = Trueanda = Falseorn >= 0 andn < 0
— These cases needs to be exhaustive

« Ex: f(n) :=2n+1 ifn>0
f(n) :==0 ifn<O0
Prove that f(n) = n forany n : Z

Casen > 0: .
f(n)=2n+1 defof f (sincen =0) | Snce these 2
>n sincen =0 cases a'fe
exhaustive,
Case n < 0: f(n) >= n
f(m)=10 def of f (since n < 0) | holds in general
> n sincen< 0

Structural Induction — Review

* Let P(S) be the claim

« To Prove P(S) holds for any list S, we need to prove two
implications: base case and inductive case

— Base Case: prove P(nil)
» Use any known facts and definitions

— Inductive Hypothesis: assume P(L) is true for a L: List
« Use this in the inductive step ONLY [2]]

— Inductive Step: prove P(x :: L) forany x : Z, L : List
* Direct proof
« Use known facts and definitions and Inductive Hypothesis

« Assuming we know P(L), if we prove P(x :: L), we then prove
recursively that P(S) holds for any List

Structural Induction - 331 Format

The following is the structural induction format we recommend for
using in your homework (the staff solution also follows this format)

1)
2)
3)
4)
o)

Introduction - define P(S) to be what we are trying to prove
Base Case - show P(nil) holds

Inductive Hypothesis - assume P(L) is true for an arbitrary list
Inductive Step - show P(x :: L) holds

Conclusion - “We have shown that P(S) holds for any list”

Review - Testing Heuristics

e Statement Coverage

- Test every executable statement reachable by an allowed input

* Branch Coverage

- For every conditional, test all branches for allowed inputs

* Loop Coverage

- Every loop/recursive call must be tested on 0, 1, any 2+ iterations for
allowed inputs

* Exhaustive Testing

- Test all possible inputs for functions with <= 10 allowed inputs

Notes on Testing Requirements

https://courses.cs.washington.edu/courses/cse331/25su/resources/testing.pdf

