
UW CSE 331 Winter 2026

CSE 331
Software Design & Implementation

Winter 2026
Section 2 - Testing and Proofs

1

Administrivia

• HW2 will be released later tonight and is due next
Wednesday @ 11:59pm!

2

Proof By Calculation Reminders
• The goal of proof by calculation is to show that an assertion is

true given facts that you already know

• You should start the proof with either the left or the right side of
the assertion and end the proof with the other side of the
assertion.

• Every symbol (=, >, <, etc.) connecting each line of the proof is
the current line’s relationship to the previous line in the proof
(not any other lines)

• Only modify one side

• Every line requires justification (except for algebraic
manipulations)

Proof By Calculation - Example
// Inputs x and y are positive integers

// Returns a positive integer.

public static int f(int x, int y) {

 return x * y;

};

● Known facts “x ≥ 1” and “y ≥ 1”
● Correct if the return value is a positive integer

x * y ≥ x * 1 since y ≥ 1
 ≥ 1 * 1 since x ≥ 1
 = 1

● Calculation shows that x * y ≥ 1

Proof By Calculation - Citing Functions

 sum(nil) := 0
 sum(x :: L) := x + sum(L)

● Know “a ≥ 0”, “b ≥ 0”, and “L = a :: b :: nil”

● Prove the “sum(L)” is non-negative
 sum(L) = sum(a :: b :: nil) since L = a :: b :: nil

 = a + sum(b :: nil) def of sum
 = a + b + sum(nil) def of sum
 = a + b def of sum
 ≥ 0 + b since a ≥ 0
 ≥ 0 since b ≥ 0

Proof By Calculation Bad Example

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use proof
by calculation to prove x2 + y2 < z2. Our proof by calculation would look
like this:

x2 + y2 < z2 beginning of a backwards proof
0 < z2 - x2 - y2
0 < z2 - 32 - y2 since x = 3
0 < z2 - 32 - 42 since y = 4
0 < z2 - 25
25 < z2

5 < |z|
Since z > 5, we know x2+y2<z2 by above.

What is wrong with this proof?

Manipulates
both sides of the
equation

doesn’t end with right
side of the assertion (z2)

Not a single
chain of
equalities

Proof by Calculation Bug: Explanation

The previous proof is an example of Circular Reasoning. We begin
the proof with the conclusion manipulating both sides until we reach
one of the given facts.

Just because we can prove one direction does not mean the other
direction necessarily holds.

We must always start from what we know and end with what we
want to prove.

Facts → Conclusion

Conclusion → Facts

Proof By Calculation Example Correct

Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use
proof by calculation to prove x2 + y2 < z2. Our proof by calculation
would look like this:

x2 + y2 = 32 + y2 since x = 3
= 32 + 42 since y = 4
= 25
= 52

< z2 since z > 5
start with left side of
assertion

note that each line
shows the
relationship only to
the previous line

end with right side of
assertion

note that every line
has
justification (except for
algebraic
manipulations)

Defining Functions By Cases – Review

n n

Proof By Cases – Review

Structural Induction – Review
• Let P(S) be the claim
• To Prove P(S) holds for any list S, we need to prove two

implications: base case and inductive case

– Base Case: prove P(nil)
• Use any known facts and definitions

– Inductive Hypothesis: assume P(L) is true for a L: List
• Use this in the inductive step ONLY ⤵

– Inductive Step: prove P(x :: L) for any x : Z, L : List
• Direct proof
• Use known facts and definitions and Inductive Hypothesis

• Assuming we know P(L), if we prove P(x :: L), we then prove
recursively that P(S) holds for any List

Structural Induction - 331 Format

The following is the structural induction format we recommend for
using in your homework (the staff solution also follows this format)
1) Introduction - define P(S) to be what we are trying to prove
2) Base Case - show P(nil) holds
3) Inductive Hypothesis - assume P(L) is true for an arbitrary list
4) Inductive Step - show P(x :: L) holds
5) Conclusion - “We have shown that P(S) holds for any list”

P(L)

P(x::L)

Review - Testing Heuristics

• Statement Coverage
- Test every executable statement reachable by an allowed input

• Branch Coverage
- For every conditional, test all branches for allowed inputs

• Loop Coverage
- Every loop/recursive call must be tested on 0, 1, any 2+ iterations for

allowed inputs

• Exhaustive Testing
- Test all possible inputs for functions with <= 10 allowed inputs

Notes on Testing Requirements

https://courses.cs.washington.edu/courses/cse331/25su/resources/testing.pdf

