CSE 331
Software Design & Implementation

Winter 2026
Section 1 — Specifications

Welcomel

« Let’s all introduce ourselves:
— Name and pronouns
— Year
— What other classes you are taking this quarter
— Would you rather be a dinosaur or a unicorn and why?

——

Homework Cycle

« Section:

— Every Thursday

— Content review & practice problems

— Graded on participation

— (If sick): Can submit on gradescope for participation credit
« Homework:

— Released Thursday evenings

— Due on Gradescope @ 11:59pm Wednesday

— TAs will assess and give feedback

— Graded on correctness

Review - Abstraction

Hides unnecessary details from clients via specification
Creates an Abstraction Barrier between clients and
implementers
- Implementers promise that the code follows the
specification
- Clients promise not to rely on details outside the
specification

client

implementer

abstraction barrier

Poll - Abstraction

What is one downside of Al regarding abstraction?

Al does not respect abstraction barriers. It relies on
iImplementation details when writing code rather than
solely specifications.

This leads to dependent code, where a change in
implementation of a function can break the rest of the
code.

Review — Specification Types

» Imperative specification says how to calculate the answer

- Gives the exact steps to get the answer
- Just have to translate math to code
- Ex: Absolute value: x| = x if x =2 0 and —x otherwise

» Declarative specification says what the answer looks like

- Does not say how to calculate it
- Up to us to ensure that our code satisfies the spec
- Ex: Subtraction (a — b): return x such thatb + x = a

Question - Specification Types

What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
e Declarative
e Imperative

- Return a number, such that this number is the same value as the square of n
e Declarative
e Imperative

Question - Specification Types

What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
e Declarative
e Imperative

- Return a number, such that this number is the same value as the square of n
e Declarative
e Imperative

Question - Specification Types

What type is each of these specs?:

- Steps to calculate the square of a number n: multiply n by itself, n * n.
e Declarative
e Imperative

- Return a number, such that this number is the same value as the square of n
e Declarative
e Imperative

Review — Specifications

A specification consists of two parts:
Precondition: Allowed inputs
Postcondition: Allowed outputs

A specification is stronger when it has /ess restrictive inputs and
more restrictive outputs. In other words, strong specifications have
more guarantees for a larger set of inputs.

Question - Specifications

Which of the two specs is stronger?:

/** Returns the square root of a given number x
* @requires x >= 0

* dreturn the integer y such that y"2 = x

Or
/** Returns the square root of a given number x
* @drequires x >= 0

* @return the integer y such that y*2 = x and y >= 0

Question - Specifications

Which of the two specs is stronger?:

/** Returns the square
* @requires x >= 0

* @return the integer

Or
/** Returns the square
* @requires x >= 0

* @return the integer

root of a given number X

y such that y”2

X

root of a given number x

y such that y*2

x and y >= 0

Review — Math Notation

N all non-negative integers (“natural” numbers)
Standard [Z all integers
notations R all real numbers
B the boolean values (T and F)
Made up for [S any character
this class S* any sequence of characters (“strings”)

 Union: A U B set including everything in A and B
 Tuple: A x B all pairs (a,p) whereae Aandb € B

 Record: {x: A, y: B} all records with fields x, y of types
A, B

Review — Math Notation

Side Conditions: limiting / specifying input in right column
- ex: abs:R—R
abs(x):=x ifx=0
abs(x) :=—x ifx<0

- conditions must be exclusive and exhaustive

Pattern Matching: defining function based on input cases
- Exactly one rule for every valid input

ex: F:N—N
f(0):=0
f(n+1):=n

- “n+ 17 signifies that input must be > 0 since smallest N would be 0
- Preferred over side conditions in most cases

Course Website > Topics > Math Notation Notes

https://courses.cs.washington.edu/courses/cse331/24au/topics/notes/math-notation.pdf

Review - Math Notation Example

Consider the following function, which calculates half when given an even number but also accepts
other inputs (though it doesn’'t perform the same behavior in those cases):

half : (undefined U N) — Z
half(undefined) :=0
half(n) v= 132 if n is even
half(n) = —(n+1)/2 if nisodd

