
CSE 331: Software Design & Implementation Winter 2026

Homework 5
Due: Wednesday, February 11th, 11:59pm

Task 1 – Joined the Term [12 pts]

Recall the join method this week’s section:

/**

* Join the two given lists into a single one

* @requires first != null, second != null

* ...

*/

public static List<Integer> join(List<Integer> first, List<Integer> second);

To do so, we need to fill in the rest of the specification. In this problem, we will consider the following
alternatives:

@return first ++ second // Spec A

@modifies first // Spec B

@return first_0 ++ second

@modifies first, second // Spec C

@return first_0 ++ second_0

@modifies first // Spec D

@effects first = first_0 ++ second

@return first_0 ++ second

@modifies first, second // Spec E

@effects first = first_0 ++ second_0

@return a list

1

For each of the following implementations, state which of the specifications A-E it satisfies, or none. If
it does not satisfy some specification, briefly explain why it does not.

a) public static List<Integer> join(List<Integer> first, List<Integer> second) {

while (!second.isEmpty()) {

first.add(second.get(0));

second.remove(0);

}

return first;

}

b) public static List<Integer> join(List<Integer> first, List<Integer> second) {

List<Integer> newList = new ArrayList<>();

newList.addAll(second);

newList.addAll(first);

return newList;

}

c) public static List<Integer> join(List<Integer> first, List<Integer> second) {

List<Integer> newList = new ArrayList<>();

newList.addAll(first);

for (Integer i : second) {

newList.add(i);

}

return newList;

}

2

Task 2 – She a Runner She a Stack Star [18 pts]

In this problem, we will work with the IntMaxStack interface. This is an ordinary stack of integers,
except that it also provides a max operation that returns the largest value in the stack.

a) Write the specification for IntMaxStack that includes a description of the abstract state, as well
as specifications for the operations size, max, push and pop, following the template shown below.
push and pop should mutate the abstract state, while the former two should not. pop was written in
section, and the equals method is provided below; you may write ”as given” for these two methods.
Feel free to make use of any of the functions included in our List reference.

/** Your interface description (including the abstract state) goes here ...*/

public interface IntMaxStack {

/** Your size method specification goes here ... */

int size();

/** Your max method specification goes here ... */

int max();

/** Your push method specification goes here ... */

void push(int n);

/**

* Compares if the stack and the given are equal.

* @param o Object that’s being compared

* @returns false if o is not an IntMaxStack.

* else, let S be the IntMaxStack represented by o

* and return equals(obj, S), where

* equals(nil, nil) := true

* equals(n :: L, nil) := false

* equals(nil, m :: R) := false

* equals(n :: L, m :: R) := (m == n) and equals(L, R)

*/

boolean equals(Object o);

/** Specification from section */

int pop();

}

We define a helper function maxHelper: (List) Ñ Z that you may find useful in your specs.

maxHelperpx :: nilq :“ x

maxHelperpx :: Lq :“ x if x ě maxHelperpLq

maxHelperpx :: Lq :“ maxHelperpLq if x ă maxHelperpLq

Note that maxHelper is undefined on nil.

3

b) We will implement IntMaxStack in a class IntMaxStackImpl. It will store the stack’s elements
as a list. However, the contents of the list will be pairs of (1) the value on the stack and (2) the
maximum from that point on (including the value at this index). For example, IntMaxStackImpl
would store the stack [7, 5, 6, 3] as [(7, 7), (5, 6), (6, 6), (3, 3)].

You will use the following helper class to store the data just described:

private static class PairList {

public final int val;

public final int max;

public final PairList next;

public PairList(int val, int max, PairList next) {

this.val = val;

this.max = max;

this.next = next;

}

}

Write and document the representation (i.e. the AF, RI, and field declarations) for the IntMaxStackImpl
class. You are welcome to use the following functions in your AF or RI, but you will have to figure
out and explain what they do.

fun1 : (PList) Ñ List

fun1pnilq :“ nil

fun1ppx,mq :: Lq :“ x :: fun1pLq

fun2 : (PList) Ñ B
fun2pnilq :“ true

fun2ppx,mq :: Lq :“ pm “ maxHelperpx :: fun1pLqqq and fun2pLq

We define the PList type that represents a list of integer pairs as follows:

type PList :“ pnil | pconsppZ,Zq,PListq

In the definition of fun2(), note that the function maxHelper() is the given function from part (a).

class IntMaxStackImpl {

// Your AF here

// Your RI here

// Your field(s) here

}

Then, explain your AF and RI in English. If you used any helper functions in your formal definition,
explain what they do and why they were useful for you.

4

c) Write a correct, simple, and fast implementation of the max method with this representation, using
proper 331 style.

d) Write a correct, simple, and fast implementation of the push method with this representation, using
proper 331 style.

5

Task 3 – Feather One’s Test [10 pts]

Now we will consider testing IntMaxStackImpl. Suppose that PairList is now a public class (for test-
ing purposes). And suppose we have the following field declaration and constructor for IntMaxStackImpl:

public PairList top;

public IntMaxStackImpl() {

top = null;

}

Now consider the following implementation of equals:

public boolean equals(Object o) {

if (!(o instanceof IntMaxStackImpl)) {

return false;

}

IntMaxStackImpl s = (IntMaxStackImpl) o;

PairList p1 = this.top;

PairList p2 = s.top;

while (p1 != null && p2 != null) {

if (p1.val != p2.val) {

return false;

}

p1 = p1.next;

p2 = p2.next;

}

if (p1 != null || p2 != null) {

return false;

}

return true;

}

Write JUnit tests for the operation of equals, and include a brief explanation of why the test was
written (for what testing heuristic?). Use the provided IntMaxStackImpl constructor to create objects
for testing. You may use assertTrue() and assertFalse() in your tests. Please follow the same
template as shown in section. You may assume that push works as intended. Note also that equals
does not modify anything (it is an observer, not a mutator).

@Test

public void testEquals() {

// Your test code goes here

}

6

Task 4 – Teenage Mutable Ninja Turtles [12 pts]

For this problem, we will work with the following ADT:

/**

* Represents a *mutable* set of integers (min, max, elems), where min and

* max are fixed bounds, elems is a list of integers, and every integer x

* in the list elems satisfies min <= x <= max. We think abstractly of the

* set as a list, where the order of elements and any duplicates are ignored.

*/

public interface MutableBoundedIntSet {

/**

* Determines whether n is in the set.

* @param n the integer to look for

* @returns contains(n, obj), where contains is defined as

* contains(n, nil) := false

* contains(n, x :: L) := true if x = n

* contains(n, x :: L) := contains(n, L) if x != n

*/

boolean contains(int n);

/**

* Adds the specified integer n to this set if it is within the

* bounds (min <= n <= max) and not already present.

* @param n the integer to add

* @throws IllegalArgumentException if n < min or n > max

* @modifies obj

* @effects obj = n :: obj_0 if !contains(n, obj_0)

* obj = obj_0 if contains(n, obj_0)

*/

void add(int n);

/**

* Removes the specified integer n from this set if it is present.

* @param n the integer to remove

* @modifies obj

* @effects obj = remove(n, obj_0) if contains(n, obj_0)

* obj = obj_0 if !contains(n, obj_0)

*/

void remove(int n);

}

Note: The function remove(n, L), used above, is defined in the list functions reference sheet on the
course website.

7

Now consider the following concrete representation of MutableBoundedIntSet:

public class MutableBoundedIntSetImpl implements MutableBoundedIntSet {

// AF: obj = this.elems

// RI: this.elems has no duplicates

// and all elements e in this.elems satisfy

// this.min <= e <= this.max

private final int min;

private final int max;

private List<Integer> elems;

}

For each of the following parts, determine whether the given implementation is correct with respect
to the specification and representation. If it is correct, briefly explain why. If it is not correct, briefly
explain what is wrong and how to fix it so that it would be correct.

a) Consider the following implementation of the constructor:

/**

* Creates and populates the set with the given parameters.

* @param min, max: The min, max bounds of the set.

* elems: The values that will be in the set.

* @modifies obj

* @effects obj = elems

*/

public MutableBoundedIntSetImpl(int min, int max, List<Integer> elems) {

this.min = min;

this.max = max;

this.elems = elems;

}

b) Consider the following implementation of contains:

public boolean contains(int n) {

if (n < min || n > max) {

return false;

}

for (int elem : elems) {

if (elem == n) {

return true;

}

}

return false;

}

8

c) Consider the following implementation of add:

public void add(int n) {

if (n >= min && n <= max && !contains(n)) {

elems.add(0, n);

}

}

d) Now suppose we add a new method for getting all the current elements of the set, getElems.
Consider its implementation:

/**

* Gets the current elements in the set as a list.

* @returns obj

*/

public List<Integer> getElems() {

return this.elems;

}

9

Task 5 – Spec-tacular Comparisons [12 pts]

Recall the MutableBoundedIntSet ADT from Task 4. For each method below, we are considering al-
ternative specifications. Fill in each blank to explain the relationships between each pair of specifications.
Write “stronger/weaker/incomparable” as you see fit. You are not required to write an explanation.

Recall that a specification is stronger if it has a weaker precondition (accepts more inputs) and/or a
stronger postcondition (more constrained outputs). If one spec has a weaker precondition but also a
weaker postcondition, they are incomparable.

a) remove - Consider the following alternative specifications:

@modifies obj // Spec A

@effects obj = remove(n, obj_0) if contains(n, obj_0)

obj = obj_0 if !contains(n, obj_0)

@returns remove(n, obj_0) if contains(n, obj_0)

obj_0 if !contains(n, obj_0)

@requires contains(n, obj_0) // Spec B

@modifies obj

@effects obj = remove(n, obj_0)

@returns remove(n, obj_0)

@modifies obj // Spec C

@effects obj = remove(n, obj_0) if contains(n, obj_0)

obj = obj_0 if !contains(n, obj_0)

@returns a MutableBoundedIntSet

@requires contains(n, obj_0) // Spec D

@modifies obj

@effects obj = remove(n, obj_0)

@returns a MutableBoundedIntSet

A is to/than B.

A is to/than C.

A is to/than D.

B is to/than C.

B is to/than D.

C is to/than D.

10

b) add - Consider the following alternative specifications:

@requires min <= n <= max // Spec A

@modifies obj

@effects obj = n :: obj_0 if !contains(n, obj_0)

obj = obj_0 if contains(n, obj_0)

@returns n :: obj_0 if !contains(n, obj_0)

obj_0 if contains(n, obj_0)

@modifies obj // Spec B

@effects obj = n :: obj_0 if min <= n <= max and

!contains(n, obj_0)

obj = obj_0 otherwise

@returns n :: obj_0 if min <= n <= max and

!contains(n, obj_0)

obj_0 otherwise

@requires min <= n <= max and !contains(n, obj_0) // Spec C

@modifies obj

@effects obj = n :: obj_0

@returns n :: obj_0

@requires min <= n <= max // Spec D

@modifies obj

@effects obj = n :: obj_0 if !contains(n, obj_0)

obj = obj_0 if contains(n, obj_0)

@returns a MutableBoundedIntSet

A is to/than B.

A is to/than C.

A is to/than D.

B is to/than C.

B is to/than D.

C is to/than D.

11

Task 6 – Optional: Lower Stack Pain [0 pts]

In this problem, we will use AI to implement the methods of IntMaxStackImpl.
Create a new Java project. Then, paste in your definition of the IntMaxStack interface. Then,

create a IntMaxStackImpl class with “implements IntMaxStack”, the inner class PairList, the
concrete representation from Task 2, and stubbed out versions of each of the IntMaxStack methods
(i.e., proper declarations but with the code missing).

a) Which AI are you using?

b) Prompt the AI to fill in each of the methods of the class, one at a time. Write out your prompts
and the code that the AI produces. State whether the code appears to be correct. If not, briefly
explain why you think it is incorrect.

12

