CSE 331: Software Design & Implementation Winter 2026

Homework 4
Due: February 4th, 11:59pm

Before you start: This homework requires some formatting. Please bold or highlight your assertions.
When proving implications, follow proper proof format of proof by calculation, as shown in lecture and
section.

Task 1 — Reason Your Chicken [16 pts]

In this problem, you will practice proving correctness of straight-line code using forward and backward
reasoning. Remember to bold or highlight your assertions.

a) Use forward reasoning to fill in the assertions. Then, show that the code is correct by proving by
cases that P implies Q).

{z=0}
if (x >= 10) {
{ i
y =4 *x - 12;
u i
} else {
o i
y = 18 - x;
{l i
}
{P: or 1
{Q: y=4}



b) Use forward reasoning to fill in P; and P». Use backward reasoning to fill in Q1 and Q2 and other
assertions.

Fill in each blank by applying the rules exactly as taught in lecture. You may simplify the
resulting assertion, but do not weaken it. If you simplify an assertion, use “<" to separate the
simplified assertion from the original assertion, as we did in section.)

Then, show that the code is correct by proving that P, implies @1 and P> implies Q2.

{P: 2=20}

if (x >= 10) {
{ P It
Q- it
y =4 x - 12;
{t 3

} else {
{2 It
{Q2: i
y = 18 - x;

l i

}
f{ly=4}



Task 2 — The Choice is Hoare's [12 pts]

When doing forward or backward reasoning, fill in each blank, making sure to bold or highlight
your assertions. You may simplify the resulting assertion, but do not weaken it. Separate any simplified
statement from the original with “<".

In the code below, we use the "::" operator as a shorthand for cons. Recall that the function
sum : (List) — Z is defined by
sum(nil) :=0

sum(x :: L) := 2 + sum(L)

a) Use forward reasoning to fill in the missing assertions in the following code:

Avoid subscripts in your assertions. We have designed this problem so that subscripts are not
necessary.

{x>0and L ="7:nil}}

X =x + 12;

i J}
R = cons(x, L);

{ i
y =x - 12;

{r: i

{Q: sum(R) > 19}

b) Show that the code is correct by proving by calculation that P implies Q.

Continued on the next page. ..



c) Use backward reasoning to fill in the missing assertions in the following code:

{P: x>0and L =6:nil}}
ffQ: i

X =x+7;

{l J}

L = cons(x, L);
{{ 1
L = cons(8, L);

{sum(L) > 21}}

d) Show that the code is correct by proving by calculation that P implies Q.



Task 3 — Loops, | Did It Again [13 pts]

Suppose we define the set of binary digits as
type Digit:=0| 1
Then, we can represent a number written in binary as the following list type:
type Digits := bitEnd(Digit) | bitCons(Digit, Digits)
bitEnd represents the last bit, and bitCons functions the same as our List cons for the binary number.

The following function, tolnt : Digits — Z translates a sequence of binary digits into the corre-
sponding integer:

tolnt(bitEnd(d)) d
tolnt(bitCons(d, R)) := d+ 2tolnt(R)

For example, we can see that

tolnt(bitCons(1, bitCons(0, bitCons(1, bitEnd(0)))))
=1 + 2 tolnt(bitCons(0, bitCons(1, bitEnd(0))))
=1+ 2(0 + 2tolnt(bitCons(1, bitEnd(0))))
=1+ 2(0+ 2(1 + 2tolnt(bitEnd(0))))
=1+20+2(1+2-0))
=1+20+2-1)
=142-2
=5
Note that the binary representation of 5 is usually written 0101, not 1010, so this definition expects

the digits to be stored in the list in reversed order, with the least significant digit at the front. Such a
representation is called "little endian” (while the ordinary representation is “big endian”).

We can represent the Digits data type as this Java class:

public class Digits {
public int digit;
public Digits next;
X

where next is null if the node is a “bitEnd” and non-null if it is a “bitCons".



The following code takes the digits in the variable L and claims to compute tolnt(L) in the variable v.
The variable d refers to the digit stored in L.digit and R refers to L.next in math notation.

{L="Lo}}

int b = 1;

int v = 0;

{ Inv: tolnt(Lg) = v+ b-tolnt(L) }}
while (L.next != null) {

{ P1: L =bitCons(d,R) and 3}
v=v+Dbx*x L.digit;
{ i
b =2 % b;
{l i
L = L.next;
{l i
{Inv: tolnt(Ly) = v + b - tolnt(L) }}
}
{ P,: L = bitEnd(d) and 1

v =v + b *x L.digit;
{{ v = tolnt(Lo) }}
Inside the body of the loop, since L.next != null, we can write L = bitCons(d, R) for some d and

R. Likewise, after the loop, the assertion will start with L = bitEnd(d) for some d, since L.next ==
null.

a) Prove that the invariant is true right before we enter the loop.
b) What are the known facts at P, when we exit the loop?

c) Prove that the postcondition holds. Use either forward or backward reasoning (your choice) on the
line of code after the loop, and indicate which reasoning you chose. Then, check that the resulting
implication holds. You must state your choice of reasoning and include your assertions.

Remember that L.digit is called “d’ in the math.
d) What are the known facts at P;, when we enter the loop body?

e) Prove that the invariant is preserved by the body of the loop. Use either forward or backward
reasoning (but not a mix of the two) to reduce the body to an implication. Then, prove the
implication. Again, you must state your choice of reasoning and include your assertions.

Hint for forward reasoning: The line L = L.next turns L into bitCons(d, L).

Hint for backward reasoning: Remember that L.next is called “R" in math notation.



Task 4 — Sum-thing Borrowed, Sum-thing Blue [12 pts]

The function mult : (Z, List) — List multiplies each element in a list of integers by a given multiplier:

mult(z, nil) = nil

mult(z,m :: L) = z-m: mult(z, L)

Code snippets A and B below both claim to compute the sum of a list of integers whose elements were
multiplied by a factor of 4:

A.

{L=1Lo}}

int z = 0;

int x = 4;

{Inv: sum(mult(x, Lg)) = z + sum(mult(z, L)) }

while (L !'= null) {
(P )
{ Qs )
z =z + L.hd * x;
{{Qu: B
L =L.tl;
{{ Qo: i

}

{ z = sum(mult(z, Lo)) }}

{L=Lo)

int d = 0;

int v = 4;

{Inv: sum(Lg) =d+sum(L) }}
while (L != null) {

{ Fo: I
{ Q2 It
d =d + L.hd;
{ Q- i
L = L.tl;
{{ Qo: It
}
d=dx*xv

{{d=v-sum(Lo) }



Fill in the remaining assertions for A. Fill in Py and Q¢ using the Floyd logic rule for while loops. Use
backward reasoning to derive )1 and Q2. Remember to bold or highlight your assertions!

Does Py imply Q2 in snippet A? Informally explain why or why not. (No proof required.)
Fill in the remaining assertions for B, in the same manner as part (a).
Does Py imply Q2 in snippet B? Informally explain why or why not. (No proof required.)

Is the value in z at the end of snippet A equal to the value in d at the end of snippet B? Informally
explain your answer in 1 or 2 sentences. (No proof required.)



Task 5 — Optional: Chicken Noodle Loop [0 pts]

In this problem, we will prove the correctness one version of the code for log3 produced by Al in
Homework 1. Here is the code produced by Cursor's chat agent:

{(n>1}

int k

0;
int m 1;
{{Inv: m = 3* and m < 3n}}

while (m < n) {

m= 3 * m;
k =k + 1;
}

{3t <nandn< 3"}

The postcondition comes from the specification, specifically the @return tag, which said that the value
of k returned should satisfy these two inequalities.

The loop invariant was not given in the specification, nor was it provided by the Al. | have filled it
in for you to make it possible to complete the proof. (More on this later. . .)

a) Prove that the invariant is true when we get to the top of the loop the first time.
b) Prove that, when we exit the loop, the postcondition holds.

c) Prove that the invariant is preserved by the body of the loop. Use either forward or backward
reasoning (your choice) to reduce the body to an implication and then check that it holds.

d) Would you have guessed that was the loop invariant just by looking at the code?

If the author of the code (Al, in this case) had proven the code correct, do you think they should
have included the loop invariant in the comments or is it fine for them to leave it out and let you
figure it out for yourself?



