CSE 331: Software Design & Implementation Winter 2026

Homework 3
Due: Wednesday, January 28th, 11:59pm

The next few problems concern the following ADT (same ADT from section):

* Represents an immutable collection of integers.

*

* Clients can think of a set as a list of integers. However, they can only ask
* if an integer is present or not. The order of the integers does not matter.
*

The number of times that an integer appears in the list does not matter.

*/

public interface IntSet {

}

VAT
* Determines whether n is in the list.

* @param n the number to look for in the list

* Qreturns contains(n, obj), where

* contains(n, nil) := false

* contains(n, m :: L) := true ifm=n
* contains(n, m :: L)

contains(n, L) if m /=n
*/

public boolean contains(int n);

VAL
* Creates and returns a new list containing n as well as all of obj.
* Q@param n the number to add to the new list.
* Q@returns n :: obj
*/
public IntSet add(int n);

VAL

* Creates and returns a new list containing all of the numbers of obj
* except for the number n, which is no longer included.

* @param n the number to not include in the new list.

* Q@returns remove(n, obj), where

* remove(n, nil) := nil

* remove(n, m :: L) := remove(n, L) if m=n
* remove(n, m :: L) :=m :: remove(n, L) if m /=n
*/

public IntSet remove(int n);

Task 1 — Concrete the Square [12 pts]

Let the abstraction function for IntSetImpl be:

// AF: obj = this.elems

Note that arrays can be thought of as lists in math.
Consider the following representation invariants for IntSetImpl, a possible concrete representation of
the IntSet ADT from above:

- RI'1l: The array this.elems is sorted in ascending order.
- RI' 2: The array this.elems contains no duplicate elements.
For each implmentation of IntSet, please answer the following questions:
1. Which of the RIs (if any) does it satisfy after the constructor is called?

2. If it satisfies an RI, what is its abstract state?
An example response to this part could be: “The abstract state is an array of characters that is
sorted in alphabetical order with duplicates.” This is simply an example of response format, not
a hint to the question.

a) public IntSetImpl(int[] elems) {
this.elems = elems;
for (int i = 0; i < elems.length - 1; i++) {
int minIndex = i;
for (int j = i + 1; j < elems.length; j++) {
if (elems[j] < elems[minIndex]) {
minIndex = j;
}
}

int temp = elems[i];

elems[i] = elems[minIndex];
elems[minIndex] = temp;
}
}
b) public IntSetImpl(int[] elems) {
this.elems = elems;
}

d)

public IntSetImpl(int[] elems) {
boolean[] seen = new boolean[elems.length];
int count = 0;
for (int i = 0; i < elems.length; i++) {
if (!'seen[i]) {
count++;
for (int j = i+1l; j < elems.length; j++) {
if (elems[j] == elems[i]) {
seen[j] = true;

}

}
this.elems = new int[count];
int index = 0;
for (int i = 0; i < elems.length; i++) {
if (!seen[i]) {
this.elems[index++] = elems[i];

public IntSetImpl(int[] elems) {
this.elems = elems;
for (int i = 1; i < elems.length; i++) {
int key = elems[i];
int j =1 - 1;
while (j >= 0 && elems[j] > key) {
elems[j + 1] = elems[j];
=
}
elems[j + 1] = key;
}
int count = 0;
for (int i = 0; i < this.elems.length; i++) {
if (i == 0 || this.elems[i] != this.elems[i - 1]) {
this.elems[count++] = this.elems[i];

}

this.elems = Arrays.copyOf (this.elems, count);

Task 2 — Set It and Forget It [10 pts]

Suppose that we changed the abstract state of IntSet to be a list with no duplicates.

Rewrite the specifications of the ADT to use this new abstract state. If the specification of a method
does not need any changes, you can just say “/*x .. as before .. x*/".

Note: the specifications of an ADT include a description of itself at the top. Reference the ADT on the
first page to consider what components need to be changed.

Task 3 — The Good, the Add, and the Ugly [12 pts]

In this problem, we will consider three different concrete representations, similar to Task 1.

€D)

(2)

(3

public class IntSetImpl implements IntSet {

// AF: obj = this.elems
private int[] elems;

// AF: obj = this.elems
// RI: this.elems contains no dups
private int[] elems;

// AF: obj = this.elems
// RI: this.elems contains no dups and is sorted in ascending order
private int[] elems;

public IntSetImpl(int[] elems) {
this.elems = elems;

}

For each of the following implementations of add, state the concrete representation(s) (1-3) for which
the implementation would satisfy the specification of the add method in our provided ADT. Just like in
section, in each case, briefly explain why.

a)

b)

public IntSet add(int n) {
int[] newElems = new int[this.elems.length + 1];
System.arraycopy(this.elems, O, newElems, 1, this.elems.length);
newElems[0] = n;
return new IntSetImpl(newElems);

}

public IntSet add(int n) {

if (this.contains(n)) {
return this;

} else {
int[] newElems = new int[this.elems.length + 1];
System.arraycopy(this.elems, O, newElems, 1, this.elems.length);
newElems[0] = n;
return new IntSetImpl(newElems);

public IntSet add(int n) {
int[] newElems = new int[this.elems.length +1]
boolean inserted = false;
int j = 0;
for (int i = 0; i < this.elems.length; i++) {
if (this.elems[i] == n) {
return this;
}
if (! inserted && n < this.elems[i]) {
newElems [j++]
inserted = true;
} else {
newElems[j++] = this.elems[i];

n;

}
}
if (linserted) {
newElems[j] = n;
}

return new IntSetImpl(newElems) ;

Task 4 — Flick of the List [12 pts]

In this problem, we will formalize an English description of one possible concrete representation of an
association list, a list of (key,value) pairs. This is the abstract state of the Map type. The primary
operation on such a list is to retrieve the (first) value associated with a given key in the list. You are
free to make use of any of the functions included in our List reference.

a)

b)

d)

The function “zip" takes two lists and returns a single list of pairs, where each element of the first list
is paired with the element of the second list at the same index. For example, zipping 1 :: 2 :: 3 :: nil
and 7 :: 8 :: 9 :: nil would produce the list (1,7) :: (2,8) :: (3,9) :: nil.

Write a formal definition of this function in our math notation. This should only be defined
when both lists are the same length.

How many test cases are required to get proper coverage for our zip function? Explain your answer
using our testing heuristics.

Write a formal specification for a concrete representation, where the keys and values are each stored
in their own array. Follow the format of Task 3's concrete representations.

Remember that the abstract state of an array is a List. (The array is itself an ADT.)

There are states where the key and value arrays are not the same length. In your concrete repre-
senation from part (c), why can we guarantee that functions will only be called on arguments that
are defined? In other words, how does our concrete representation handle the case where key-value
arrays are different lengths?

Task 5 — Optional: A Priest, a Minister, and an A-I [0 pts]

In this problem, we will use Al to implement the methods of IntSetImpl. For parts b-c and f-g, refer
to the concrete representations found in Task 1.
Start with the following dummy implementation:

public class IntSetImpl implements IntSet {
private int[] elems;

public IntSetImpl(int[] elems) {
this.elems = elems;

¥

public boolean contains(int n) {
return false;

}

public IntSet add(int n) {
return this;

}

IntSet remove(int n) {
return this;

¥

a) Which Al are you using?
Prompt the Al to fill in the body of the contains method. Write out your prompt and the code
that the Al produces.

b) With which of the concrete representations from Task 1 (if any) would have this code be correct?

c) Delete the generated code for contains.
Now, add comments for specification (3), and prompt it again to fill in the body of contains.
What code does it produce?

d) Based on what you saw in these last two parts, would you agree or disagree with the following
statement: “Comments are important for explaining the code to other humans, but Al doesn’t need
them.”

e) Delete the generated code for contains and the comments above elems. Next, we will try a similar
experiment with the add method.
Prompt the Al to fill in the body of the add method. Write out your prompt and the code that
the Al produces.

f) With which of the concrete representations from Task 1 (if any) would have this code be correct?

g) Delete the generated code for add.

Now, add comments for one of the specifications from section for which the generated code
was not correct, and try prompting it again with the same prompt. Does it produce correct code?
If not, try rephrasing your comments a couple of times to see if different phrasing works.

