CSE 331: Software Design & Implementation Winter 2026

Homework 2
Due: Wednesday, January 21st, 11:59pm

Task 1 — The Test Man Speech [10 pts]

Complete these tasks or each of the following functions.

- State the number of tests required to meet the 331 coverage requirements and explain why that
is the required number.

- Then, describe a specific set of tests to use. The size of set should match the number of tests you
stated before. Describe each test by giving the input (identify a specific input rather than saying,
e.g., "some positive number") and briefly state what portion of the function it tests (e.g., "first
if statement coverage”, "for 0 iterations”).

a) The function j : (List) — List defined by

J(nil) = nil
j(a :: nil) = nil
jla:b:L)=>b:a:j(L)

b) /** @requires b >= 1 and n >= 0 */
public static int pow(int b, int n) {
if (n == 0) {
return 1;
}
return b * pow(b, n - 1);

}

Task 2 — The Minner Takes It All [14 pts]

The functions max, min : (Z,Z) — 7Z are defined as follows:

max(a,b) :=a ifa=b

max(a,b) :==b ifa<b

min(a,b) :=b ifa>=b

min(a,b) :=a ifa<b

a) Using these definitions, prove the following claim by cases:
min(a, b) < max(a,b)

For this problem, when you cite the definition of min or max in your proof, also mention which line
of the definition you are citing.

b) Now consider the code implementations of max and min.

Note that the names of the code functions match the names of the math functions. The
comments describe which math function each code function is implementing.

// returns max(a, b), where max is the math function defined earlier
public static int max(int a, int b) {
if (a >=b) {
return a;
} else {
return b;
}
}

// returns min(a, b), where min is the math function defined earlier
public static int min(int a, int b) {
if (a >=b) {
return b;
} else {
return a;
}
}

State the number of tests needed to meet our coverage requirements. List a set of test inputs (of
the form a = ... and b = ...) that achieves this for both functions, an explain which parts of the
code each inputs would cover. You may use the same set of test inputs for both functions.

Task 3 — A Tail of Two Cities [16 pts]

The functions head : (List) — Z and tail : (List) — List are defined only on non-nil lists, with the

following definitions:
head(z :: L) =z

tail(z : L) = L
Now consider the function swap : (List) — List, defined as follows:

swap(nil) = nil

swap(z :: nil) = x :: nil
swap(z 1y 2 L) =y :: @ :: swap(L)
You will use these functions in the problem below.

Let = and y be integers and L a list. Complete each of the following proofs by calculation.

Include an explanation on each step where a given fact is used. You may skip an explanation only
if the claim written in that step is /iterally a known fact. It is also fine to skip an explanation for simple
algebraic equivalences (e.g., 3- 0 = 3).

Also include an explanation on each step where a definition is used. You do not need to include
an explanation on lines that simply rewrite an expression in alternative but equivalent notation. For
example, no explanation is needed when replacing “[x]" by “x :: nil”, which means the same thing. For
this problem, you do not need to say which line of a definition you are citing; you can just say which
function’s definition you are citing.

a) head(nil 4 [z]) = .

b) tail(nil # [z]) = nil.

¢) head((y :: L) + [z]) = .

d) tail(swap(z :: y :: nil)) = :: nil

e) head(tail(swap([z] #+y:: 2z L)) ==«

Task 4 — Succs to Succ [15 pts]

Recall the definition of the natural numbers N:
type N = zero | succ(N)

We can think of each natural number as counting out steps along the = axis. A single call to succ
is 1 step. We take multiple steps by making nested calls to succ. For example, the natural number
succ(succ(succ(zero))) is taking three steps along the = axis starting from zero, so it represents the
number 3.

3 steps
— e
zero 3

We can then define addition of natural numbers, add : (N,N) — N, by thinking of add(n, k) as
taking k steps and then n steps along the = axis. For example, add(3,5), adding 3 to 5 looks like this:

5 steps 3 steps

We can accomplish this with the following definition.

add(zero, k) = k
add(succ(n), k) = succ(add(n, k))

The first line of the definition says that k steps and then zero steps is just k steps. The second line says
that taking k steps and then n + 1 steps is the same as taking k steps and then n steps and then one
more step. The resulting definition of add is structurally recursive on its first parameter.

Prove that add(n,succ(k)) = add(succ(n), k) holds for all n and k by structural induction on n.
For this problem only, use the notation zero and succ in your proof; do not use the notations “0" or
H+111 .

Task 5 — Extra Credit: If You Catch My Shift [0 pts]

The functions shift-left, shift-right : (List) — List rotate the elements in a list forward by one index
and backward by one index, respectively, wrapping around at the beginning and end. They are defined

formally as follows:
shift-left(nil) = nil

shift-left(z :: L) = L + [z]
shift-right(nil) = nil
shift-right(z :: L) = last(z :: L) :: init(x :: L)
You will use these functions in the problem below.
a) Let = be an integer. Prove last(L + [z]) = x by structural induction on L.

b) Let = be an integer. Prove init(L +# [z]) = L by structural induction on L.

c) Prove that shift-right(shift-left(L)) = L holds by cases.

Task 6 — Optional: Be Add That It Happened [0 pts]

Recall the definitions of N and add : (N,N) — N from Task 4.

a) Prove that add(n, zero) = n by structural induction.

b) Prove that add(n,m) = add(m,n) holds for all n and m by structural induction on n.

