CSE 331: Software Design & Implementation Winter 2026

Homework 1
Due: Wednesday, January 14th, 11:59pm

Task 1 — Every Log Has Its Day [8 pts]

We plan to provide the following method:

a)

b)

d)

/** Calculates the integer, base-3 logarithm of n.
* Q@return the integer k such that 3"k <= n < 37 (k+1)
*/

public static int log3(int n);

When n is a power of 3, the integer k from the spec will satisfy 3 = n. Taking logarithms on both
sides, we see that k& = logs(n). Now consider the case where n is not a power of 3. Explain what
value is returned by the method in this case by relating it to logs(n) (which is not an integer).

Keeping in mind your answer to (a), what is an another, equally reasonable but incomparable, way to
specify this function? Your answer should leave the precondition unchanged and should only change
the postcondition when n is not a power of 3. Write your answer in two ways: once in a similar
format to how you answered part (a), and once as a drop-in replacement for the @return section
of the original specification (using similar formulas).

This specification precisely defines the return value for positive n, but it does not make sense when n
is not positive. Give two distinct ways of turning this into a specification that fully defines behavior
for all integer inputs, now including non-positive values (i.e. each spec must reasonably handle all
possible integers).

Your two specifications must still return the value described in the original specification when
n is positive but they should be incomparable with each other. Format your specifications using
331-style Javadoc tags.

Your two specifications from part (c) are incomparable. Give another distinct specification that is
weaker than both of your specifications from part (c).

Again, it must still return the value described in the original specification when n is positive.

Task 2 — The New Formal [9 pts]

In this problem, we will formalize the following English description: “the function mult multiplies together
the values in a given list”.

a) Calculate the value of mult on 3 :: 5 :: 2 :: nil and each shorter list: 5 :: 2 :: nil, and 2 :: nil.

b) Looking at these examples, describe how we can calculate mult(z :: L) in terms of and mult(L)?
Show how your description works on 3 :: 5 :: 2 :: nil.

c) It is not clear from the English that mult(nil) makes any sense. Suppose that we want to support
empty lists (as opposed to disallowing empty lists, which is another reasonable option).
How do we define mult(nil) so that the recursive pattern you identified in part (b) applies to
lists containing one element also?

d) Write a formal definition of mult, both its type and definition, using our mathematical notation.

Task 3 — New Year, New Me [6 pts]

We plan to provide the following method. A Resolution is an object containing an attribute of type
Theme (and other attributes).

/**

* Returns the count of the number of resolutions of a specified theme.
*

*/...

public static int countResolutions(Resolution[] myResos, Theme wantedTheme);
To do so, we need to fill in the rest of the specification.
We are considering the following alternatives:

@requires myResos is not null // Spec A
@throws NullPointerException if wantedTheme is null
Q@return the count of items in myResos matching the wantedTheme

O@requires myResos is not null // Spec B
Q@return the count of items in myResos matching the wantedTheme
or -1 if wantedTheme is null

O@requires myResos is not null and wantedTheme is not null // Spec C
O@return the count of items in myResos matching the wantedTheme

In the following questions, decide how the two specs compare, and explain your reasoning briefly in 1-2
sentences.

a) Specs A and B
b) Specs A and C
c) Specs B and C

Task 4 — Extra Credit: The Log Ate My Homework [0 pts]

The original specification in Task 1 is declarative. Write an imperative specification for positive n using
our mathematical notation (inside the Javadoc @return). Do not worry about efficiency.

Assume that integer addition, multiplication, and comparison operators are already defined.

Hint: Define a function with two parameters, where the first parameter is n and the second
parameter is used to count upward until we find the correct value of k. You can then specify the return
value, in the @return, as a call to your function with appropriate choices for its two parameter values.
For this problem, you can assume that our math notation includes exponentiation when the base is 3
(e.g., 3™).

Task 5 — Optional: A-l, Captain [0 pts]

In this problem, we will use Al to implement the 1og3 method from Task 1 with different specifications.

a) Which Al are you using?

b) Prompt the Al to fill in the body of 1og3 for your incomparable specifications from Task 1(c). Show
the code that it produces.

c) Now, prompt it using your weaker specification from Task 1(d). Which code does it give you? Is
that guaranteed to be the one that you wanted?

d) Change back to one of your specifications from Task 1(c), but now, change the postcondition for
positive values of n to your alternative, incomparable @return from Task 1(b).

Prompt the Al to fill in the body. Show the code that it produces.

e) Now, change the @return to this less formal, English specification:
Oreturn the base-3 logarithm of n

Prompt the Al to fill in this method body. Which code does it give you? Is that guaranteed to be
the one that you wanted?

