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Indexing

 at : (List, ℕ) → ℤ

 at(nil , n)   :=  undefined

 at(x :: L , 0)  :=  x

 at(x :: L , n+1) :=  at(L, n)

• Retrieve an element of the list by index

– use "L[j]" as an abbreviation for at(j, L)

• Not an efficient operation on lists…



Linked Lists in Memory

• Must follow the "next" pointers to find elements

– at(L, n) is an O(n) operation

– no faster way to do this
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Faster Implementation of at

• Alternative: store the elements next to each other

– can find the n-th entry by arithmetic:

location of L[4]  =  (location of L) + 4 * sizeof(data)

• Resulting data structure is an array
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Faster Implementation of at

• Resulting data structure is an array

•  Efficient to read L[i]

•  Inefficient to…

– insert elements anywhere but the end

– write operations with an immutable ADT

– trees can do all of this in O(log n) time
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Access By Index

• Easily access both L[0] and L[n-1], where n = len(L)
– can process a list in either direction

• “With great power, comes great responsibility”
— the Peter Parker Principle

• Whenever we write “A[j]”, we must check 0 ≤ j < n
– new bug just dropped!

with list, we only need to worry about nil and non-nil

once we know L is non-nil, we know L.hd exists

– TypeScript will not help us with this!

type checker does catch “could be nil” bugs, but not this



Recall: Sum List With a Loop

sum-acc(nil, r) := r

 sum-acc(x :: L, r) := sum-acc(L, x + r)

• Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {

  let r = 0;

  // Inv: sum(S0) = r + sum(S)

  while (S.kind !== "nil") {

    r = S.hd + r;

    S = S.tl;

  }

  return r;

};

Change to a version that uses indexes…



Sum List by Index

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  // Inv: …

  while (j !== S.length) { // … S.kind !== "nil"

    r = S[j] + r;        // … r = S.hd + r

    j = j + 1;             // … S = S.tl

  }

  return r;

};
Note that S is no longer changing



Sum List by Index

sum-acc : (List, ℕ, ℤ) → ℤ

 sum-acc(S, j, r) := r       if j = len(S)

 sum-acc(S, j, r) := sum-acc(S, j+1, S[j] + r)  if j ≠ len(S)

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  // Inv: …

  while (j !== S.length) {

    r = S[j] + r;

    j = j + 1;

  }

  return r;

};



Sublists

• Use indexes to refer to a section of a list (a "sublist"):

 sublist : (List, ℤ, ℤ)  → ℤ

 sublist(L, i, j)  :=  nil     if j < i

 sublist(L, i, j)  :=  L[i] :: sublist(L, i + 1, j) if i ≤ j

• Useful for reasoning about lists and indexes

• This includes both L[i] and L[j]

sublist(L, 0, 2) = L[0] :: sublist(L, 1, 2)    def of sublist (since 0 ≤ 2)

   = L[0] :: L[1] :: sublist(L, 2, 2)   def of sublist (since 1 ≤ 2)

   = L[0] :: L[1] :: L[2] :: sublist(L, 3, 2)  def of sublist (since 2 ≤ 2)

   = L[0] :: L[1] :: L[2] :: nil    def of sublist (since 3 < 2)

   = [L[0], L[1], L[2]]



Sublists

• Use indexes to refer to a section of a list (a "sublist"):

 sublist : (List, ℤ, ℤ)  → ℤ

 sublist(L, i, j)  :=  nil     if j < i

 sublist(L, i, j)  :=  L[i] :: sublist(L, i + 1, j) if i ≤ j

• The sublist is empty when the range is empty

 sublist(L, 3, 2) = nil

– weird-looking example that comes up a lot:

 sublist(L, 0, -1) = nil

– not an array out of bonds error! (this is math, not Java)



Sublists

sublist : (List, ℤ, ℤ)  → ℤ

 sublist(L, i, j)  :=  nil     if j < i

 sublist(L, i, j)  :=  L[i] :: sublist(L, i + 1, j) if i ≤ j

• Will use "L[i .. j]" as shorthand for "sublist(L, i, j)"

– again, using an operator for most common operations

• Some useful facts about sublists:

L = L[0 .. len(L)-1]   

L[i .. j] = L[i .. k] ⧺ L[k+1 .. j] for any k with i – 1 ≤ k ≤ j  (and 0 ≤ i ≤ j < n)



Sum List by Index

sum-acc(S, j, r) := r       if j = len(S)

 sum-acc(S, j, r) := sum-acc(S, j+1, S[j] + r)  if j ≠ len(S)

• Change to using an array and accessing by index

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  // Inv: … ?? …

  while (j != S.length) {

    r = S[j] + r;

    j = j + 1;

  }

  return r;

};

Still need to fill in Inv…

Need a version using indexes.



Recall: Sum List With a Loop

sum-acc(S, j, r) := r       if j = len(S)

 sum-acc(S, j, r) := sum-acc(S, j+1, S[j] + r)  if j ≠ len(S)

• Tail recursive version is a loop

const sum = (S: List<bigint>): bigint => {

  let r = 0;

  // Inv: sum(S0) = r + sum(S)

  while (S.kind !== "nil") {

    r = S.hd + r;

    S = S.tl;

  }

  return r;

}; Inv says sum(S0) is r plus sum of rest (S)

Not the most explicit way of explaining "r"…



Recall: Sum List With a Loop

• "r" contains sum of the part of the list seen so far

• Can explain this more simply with indexes…

– no longer need to move S

sum(S0) =       r          +          sum(S)

SS0



Using Sublists With Loops

• Sum is the part in "r" plus the part left in S[j .. n-1]

• What sum is in "r"?

 r = sum(S[0 .. j-1])

– we can use just this as our invariant! (it's all we need)

sum(S) =       r          +  sum(S[j .. n-1])

j

S



Using Sublists With Loops

• Array version uses access by index

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  // Inv: r = sum(S[0 .. j-1])

  while (j != S.length) {

    r = S[j] + r;

    j = j + 1;

  }

  return r;

};
Are we sure this is right?

Let's think it through…



Sum of an Array

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  {{ r = 0 and j = 0 }}

  {{ Inv: r = sum(S[0 .. j-1]) }}

  while (j != S.length) {

    r = S[j] + r;

    j = j + 1;

  }

  return r;

};

Does Inv hold initially?

sum(S[0 .. j-1])
  = sum(S[0 .. -1])  since j = 0
   = sum([])
   = 0    def of sum
   = r



Sum of an Array

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  {{ Inv: r = sum(S[0 .. j-1]) }}

  while (j != S.length) {

    r = S[j] + r;

    j = j + 1;

  }

  {{ r = sum(S[0 .. j-1]) and j = len(S) }}

  {{ r = sum(S) }}

  return r;

};

Does the postcondition hold?

r = sum(S[0 .. j-1])
   = sum(S[0 .. len(S)-1]) since j = len(S)
   = sum(S)
  



Sum of an Array

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  {{ Inv: r = sum(S[0 .. j-1]) }}

  while (j != S.length) {

    {{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

    r = S[j] + r;

    j = j + 1;

    {{ r = sum(S[0 .. j-1]) }}

  }

  return r;

};



Sum of an Array

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  {{ Inv: r = sum(S[0 .. j-1]) }}

  while (j != S.length) {

    {{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

    r = S[j] + r;

    {{ r = sum(S[0 .. j]) }}

    j = j + 1;

    {{ r = sum(S[0 .. j-1]) }}

  }

  return r;

};



Sum of an Array

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  {{ Inv: r = sum(S[0 .. j-1]) }}

  while (j != S.length) {

    {{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

    {{ S[j] + r = sum(S[0 .. j]) }}

    r = S[j] + r;

    {{ r = sum(S[0 .. j]) }}

    j = j + 1;

    {{ r = sum(S[0 .. j-1]) }}

  }

  return r;

};



Sum of an Array

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  {{ Inv: r = sum(S[0 .. j-1]) }}

  while (j != S.length) {

    {{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

    {{ S[j] + r = sum(S[0 .. j]) }}

    r = S[j] + r;

    {{ r = sum(S[0 .. j]) }}

    j = j + 1;

    {{ r = sum(S[0 .. j-1]) }}

  }

  return r;

};

Is this valid?



Sum of an Array

{{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

  {{ S[j] + r = sum(S[0 .. j]) }}

S[j] + r

  = S[j] + sum(S[0 .. j-1])   since r = sum(S[0 .. j-1]) 

  = sum(S[0 .. j-1]) + S[j]

  = sum(S[0 .. j-1]) + sum([S[j]])  def of sum

  = sum(S[0 .. j-1]) + sum(S[j .. j])



Sum of an Array

{{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

  {{ S[j] + r = sum(S[0 .. j]) }}

S[j] + r

  = S[j] + sum(S[0 .. j-1])   since r = sum(S[0 .. j-1]) 

  = sum(S[0 .. j-1]) + S[j]

  = sum(S[0 .. j-1]) + sum([S[j]])  def of sum

  = sum(S[0 .. j-1]) + sum(S[j .. j])

  = …

  = sum(S[0 .. j])



Sum of an Array

{{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

  {{ S[j] + r = sum(S[0 .. j]) }}

S[j] + r

  = S[j] + sum(S[0 .. j-1])   since r = sum(S[0 .. j-1]) 

  = sum(S[0 .. j-1]) + S[j]

  = sum(S[0 .. j-1]) + sum([S[j]])  def of sum

  = sum(S[0 .. j-1]) + sum(S[j .. j])

  = …

  = sum(S[0 .. j-1] ⧺ S[j .. j])

  = sum(S[0 .. j])

• We saw that len(L ⧺ R) = len(L) + len(R)

• Does sum(L ⧺ R) = sum(L) + sum(R)?
– Yes! Very similar proof by structural induction. (Call this Lemma 3)



Sum of an Array

{{ r = sum(S[0 .. j-1]) and j ≠ len(S) }}

  {{ S[j] + r = sum(S[0 .. j]) }}

S[j] + r

  = S[j] + sum(S[0 .. j-1])   since r = sum(S[0 .. j-1]) 

  = sum(S[0 .. j-1]) + S[j]

  = sum(S[0 .. j-1]) + sum([S[j]])  def of sum

  = sum(S[0 .. j-1]) + sum(S[j .. j])

 = sum(S[0 .. j-1] ⧺ S[j .. j])   by Lemma 3

  = sum(S[0 .. j])

(The need to reason by induction comes up all the time.)



Sum of an Array

{{ r – S[j-1] = sum(S[0 .. j-2]) and j-1 ≠ len(S) }}

  {{ r = sum(S[0 .. j-1]) }}

r = S[j-1] + sum(S[0 .. j-2])    since r – S[j-1] = sum(S[0 .. j-2]) 

  = sum(S[0 .. j-2]) + S[j-1]

  = sum(S[0 .. j-2]) + sum([S[j-1]])  def of sum

  = sum(S[0 .. j-2]) + sum(S[j-1 .. j-1])

  = …

  = sum(S[0 .. j-2] ⧺ S[j-1 .. j-1])

  = sum(S[0 .. j-1])

• We saw that len(L ⧺ R) = len(L) + len(R)

• Does sum(L ⧺ R) = sum(L) + sum(R)?
– Yes! Very similar proof by structural induction. (Call this Lemma 3)



Sum of an Array

{{ r – S[j-1] = sum(S[0 .. j-2]) and j-1 ≠ len(S) }}

  {{ r = sum(S[0 .. j-1]) }}

r = S[j-1] + sum(S[0 .. j-2])    since r – S[j-1] = sum(S[0 .. j-2]) 

  = sum(S[0 .. j-2]) + S[j-1]

  = sum(S[0 .. j-2]) + sum([S[j-1]])  def of sum

  = sum(S[0 .. j-2]) + sum(S[j-1 .. j-1])

  = sum(S[0 .. j-2] ⧺ S[j-1 .. j-1])   by Lemma 3

  = sum(S[0 .. j-1])

(The need to reason by induction comes up all the time.)



Linear Search of a List

contains(nil, y) := false      

 contains(x :: L, y) := true   if x = y

 contains(x :: L, y) := contains(L, y) if x ≠ y

• Tail-recursive definition

const contains =

    (S: List<bigint>, y: bigint): bigint => {

  // Inv: contains(S0, y) = contains(S, y)

  while (S.kind !== "nil" && S.hd !== y) {

    S = S.tl;

  }

  return S.kind !== "nil";  // implies S.hd === y

};

Change to a version that uses indexes…



Linear Search of an Array

contains(nil, y) := false      

 contains(x :: L, y) := true   if x = y

 contains(x :: L, y) := contains(L, y) if x ≠ y

• Change to using an array and accessing by index

const contains =

    (S: Array<bigint>, y: bigint): bigint => {

  let j = 0;

  // Inv: …

  while (j !== S.length && S[j] !== y) {

    j = j + 1;

  }

  return j !== S.length;

};

S.hd with S changing becomes

S[j] with j changing

What is the invariant now?



Linear Search of an Array

contains(nil, y) := false      

 contains(x :: L, y) := true   if x = y

 contains(x :: L, y) := contains(L, y) if x ≠ y

• Change to using an array and accessing by index

const contains =

    (S: Array<bigint>, y: bigint): bigint => {

  let j = 0;

  // Inv: contains(S, y) = contains(S[j .. n-1], y)

  while (j !== S.length && S[j] !== y) {

    j = j + 1;

  }

  return j !== S.length;

};

Can we explain this better?



Linear Search of an Array

• What do we know about the left segment?

– it does not contain "y"

– that's why we kept searching

contains(S, y) =         contains(S[j .. n-1], y)

j

S

j

S __ ≠ y



Linear Search of an Array

• Update the invariant to be more informative

const contains =

    (S: Array<bigint>, y: bigint): bigint => {

  let j = 0;

  // Inv: S[i] ≠ y for any i = 0 .. j-1

  while (j !== S.length && S[j] !== y) {

    j = j + 1;

  }

  return j !== S.length;

};

j

S __ ≠ y



Facts About Sublists

• “With great power, comes great responsibility” 

• Since we can easily access any L[j],
may need to keep track of facts about it

– may need facts about every element in the list

applies to preconditions, postconditions, and intermediate assertions

• We can write facts about several elements at once:

– this says that elements at indexes 0 .. j-1 are not y

 S[i] ≠ y  for any 0 ≤ i < j

– shorthand for j facts:  S[0] ≠ y, …, S[j-1] ≠ y



Reasoning Toolkit

Description Testing Tools Reasoning

no mutation full coverage type checker calculation
induction

local variable mutation “ “ Floyd logic

heap state “ “ rep invariants

arrays “ “ for-any facts



Facts About Sublists

• “With great power, comes great responsibility” 

– since we can easily access any L[j], may need facts about it

• We can write facts about several elements at once:

– this says that elements at indexes 0 .. j-1 are not y

 S[i] ≠ y  for any 0 ≤ i < j

• These facts get hard to write down!

– we will need to find ways to make this easier

– a common trick is to draw pictures instead…



Visual Presentation of Facts

• Just saw this example

• But we have seen "for any" facts with BSTs…

– "for any" facts are common in more complex code

– drawing pictures is a typical coping mechanism

j

S __ ≠ y

x

L R

contains-key(y, L)  →  (y < x)
contains-key(z, R)  →  (x < z)



Recall: Linear Search of an Array

• Let's check the correctness of this loop (w/ pictures)

const contains =

    (S: Array<bigint>, y: bigint): boolean => {

  let j = 0;

  // Inv: S[k] /= y for any k = 0 .. j-1

  while (j !== S.length && S[j] !== y) {

    j = j + 1;

  }

  return j !== S.length;

};

j

S __ ≠ y

Inv: gold part contains no y



Linear Search of an Array

const contains =

    (S: Array<bigint>, y: bigint): boolean => {

  let j = 0;

  {{ j = 0 }}

  {{ Inv: S[i] ≠ y  for any 0 ≤ i ≤ j – 1 }}

  while (j !== S.length && S[j] !== y) {

    j = j + 1;

  }

  return j !== S.length;

};

j

S __ ≠ y

What is the picture when j = 0?

j

S

Inv holds because there is no gold part.



Linear Search of an Array

const contains =

    (S: Array<bigint>, y: bigint): boolean => {

  let j = 0;

  {{ Inv: S[i] ≠ y  for any 0 ≤ i ≤ j – 1 }}

  while (j !== S.length && S[j] !== y) {

   {{ (S[i] ≠ y  for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

    j = j + 1;

    {{ S[i] ≠ y  for any 0 ≤ i ≤ j – 1 }}

  }

  return j !== S.length;

};

j

S __ ≠ y



Linear Search of an Array

const contains =

    (S: Array<bigint>, y: bigint): boolean => {

  let j = 0;

  {{ Inv: S[i] ≠ y  for any 0 ≤ i ≤ j – 1 }}

  while (j !== S.length && S[j] !== y) {

   {{ (S[i] ≠ y  for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

   {{ S[i] ≠ y  for any 0 ≤ i ≤ j }}

    j = j + 1;

    {{ S[i] ≠ y  for any 0 ≤ i ≤ j – 1 }}

  }

  return j !== S.length;

};

j

S __ ≠ y

Is this valid?



Linear Search of an Array

{{ (S[i] ≠ y  for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

   {{ S[i] ≠ y  for any 0 ≤ i ≤ j }}

• What does the top assertion say about S[j]?

– it is not y

j

S __ ≠ y



Linear Search of an Array

{{ (S[i] ≠ y  for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

   {{ S[i] ≠ y  for any 0 ≤ i ≤ j }}

• What is the picture for the bottom assertion?

• Do the facts above imply this holds?

– Yes! It's the same picture

j

S __ ≠ y

j

S __ ≠ y

j+1



Linear Search of an Array

{{ (S[i] ≠ y  for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j] ≠ y }}

   {{ S[i] ≠ y  for any 0 ≤ i ≤ j }}

• What is the picture for the bottom assertion?

• Most likely bug is an off-by-one error

– must check S[j], not S[j-1] or S[j+1]

j

S __ ≠ y

j

S __ ≠ y

j+1



Linear Search of an Array

while (j !== S.length && S[j+1] !== y) {

   {{ (S[i] ≠ y  for any 0 ≤ i ≤ j – 1) and j ≠ len(S) and S[j+1] ≠ y }}

   {{ S[i] ≠ y  for any 0 ≤ i ≤ j }}

• What is the picture for the bottom assertion?

• Reasoning would verify that this is not correct

j

S __ ≠ y

j

S __ ≠ y

j+1

j+1



Linear Search of an Array

const contains =

    (S: Array<bigint>, y: bigint): boolean => {

  let j = 0;

  {{ Inv: S[i] ≠ y  for any 0 ≤ i ≤ j – 1 }}

  while (j !== S.length && S[j] !== y) {

    j = j + 1;

  }

  {{ Inv and (j = len(S) or S[j] = y) }}

  {{ contains(S, y) = (j ≠ len(S)) }}

  return j !== S.length;

};

j

S __ ≠ y

"or" means cases…

Case j ≠ len(S): 

Must have S[j] = y.

What is the picture now?

j

__ ≠ y y

Code should and does return true.



Linear Search of an Array

const contains =

    (S: Array<bigint>, y: bigint): boolean => {

  let j = 0;

  {{ Inv: S[i] ≠ y  for any 0 ≤ i ≤ j – 1 }}

  while (j !== S.length && S[j] !== y) {

    j = j + 1;

  }

  {{ Inv and (j = len(S) or S[j] = y) }}

  {{ contains(S, y) = (j ≠ len(S)) }}

  return j !== S.length;

};

j

S __ ≠ y

Case j = len(S): 

What does Inv say now?

"or" means cases…

j

__ ≠ y

Says y is not in the array!

Code should and does return false.



Finding an Element in an Array

• Can search for an element in an array as follows

 contains(nil, y) := false      

 contains(x :: L, y) := true   if x = y

 contains(x :: L, y) := contains(L, y) if x ≠ y

• Searches through the array in linear time

– did the same on lists

• Can be done more quickly if the list is sorted

– binary search!



Finding an Element in a Sorted Array

• Can search more quickly if the list is sorted

– precondition is A[0] ≤ A[1] ≤ … ≤ A[n-1]  (informal)

– write this formally as

 A[j] ≤ A[j+1] for any 0 ≤ j ≤ n – 2

• Not easy to describe this visually…

– how about a gradient?

S



Binary Search of an Array

const bsearch = (S: …, y: …): boolean => {

  let j = 0, k = S.length;

  {{ Inv: (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

  while (j !== k) {

    const m = (j + k) / 2n;

    if (S[m] < y) {

      j = m + 1;

    } else {

      k = m;

    }

  }

  return (S[k] === y);

};

j

S __ < y

k

y ≤ __

Inv includes facts about two regions.

Let's check that this is right…



Binary Search of an Array

const bsearch = (S: …, y: …): boolean => {

  let j = 0, k = S.length;

  {{ j = 0 and k = n }}

  {{ Inv: (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

• What does the picture look like with j = 0 and k = n?

• Does this hold?

– Yes! It's vacuously true

j

S __ < y

k

y ≤ __

j k



Binary Search of an Array

const bsearch = (S: …, y: …): boolean => {

  let j = 0, k = S.length;

  {{ Inv: (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

  while (j !== k) {

   …

  }

  {{ Inv and (j = k) }}

  {{ contains(S, y) = (S[y] = y) }}

  return (S[k] === y);

};

j

S __ < y

k

y ≤ __



Binary Search of an Array

{{ Inv and (j = k) }}

  {{ contains(S, y) = (S[y] = y) }}

  return (S[k] === y);

};

• What does the picture look like with j = k?

• Does S contain y iff S[k] = y?

– If S[k] = y, then contains(S, y) = true

– If S[k] ≠ y, then S[k] < y and S[i] < y for every k < i, so contains(S, y) = false

j

S __ < y

k

y ≤ __

j = k

__ < y y ≤ __

What case are we missing?



Binary Search of an Array

{{ Inv and (j = k) }}

  {{ contains(S, y) = (S[y] = y) }}

  return (S[k] === y);

};

• What does the picture look like with j = k = n?

• In this case…

– we see that contains(S, y) = false

– and the code returns false because "undefined === y" is false

(Okay, but yuck.)

j

S __ < y

k

y ≤ __

j = k = n

__ < y



Binary Search of an Array

{{ Inv: (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

  while (j !== k) {

    {{ Inv and (j < k) }}

    const m = (j + k) / 2n;

    if (S[m] < y) {

      j = m + 1;

    } else {

      k = m;

    }

    {{ (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

  }

j

S __ < y

k

y ≤ __

Reason through both paths…



Binary Search of an Array

{{ Inv and (j < k) }}

    const m = (j + k) / 2n;

    if (S[m] < y) {

      {{ Inv and (j < k) and (S[m] < y) }}

      j = m + 1;

    } else {

      {{ Inv and (j < k) and (S[m] ≥ y) }}

      k = m;

    }

    {{ (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

  }

j

S __ < y

k

y ≤ __



Binary Search of an Array

const m = (j + k) / 2n;

    if (S[m] < y) {

      {{ Inv and (j < k) and (S[m] < y) }}

      {{ (S[i] < y  for any 0 ≤ i < m+1) and (y ≤ S[i] for any k ≤ i < n) }}

      j = m + 1;

    } else {

      {{ Inv and (j < k) and (S[m] ≥ y) }}

      {{ (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any m ≤ i < n) }}

      k = m;

    }

  {{ (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

j

S __ < y

k

y ≤ __



Binary Search of an Array

const m = (j + k) / 2n;

    if (S[m] < y) {

      {{ Inv and (j < k) and (S[m] < y) }}

      {{ (S[i] < y  for any 0 ≤ i < m+1) and (y ≤ S[i] for any k ≤ i < n) }}

      j = m + 1;

    } …

j

S __ < y

k

y ≤ __

m

• What does the picture look like in the bottom assertion?

• Does this hold?

– Yes! Because the array is sorted (everything before S[m] is even smaller)

__ < y

k

y ≤ __

m



Binary Search of an Array

const m = (j + k) / 2n;

    … else {

      {{ Inv and (j < k) and (S[m] ≥ y) }}

      {{ (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any m ≤ i < n) }}

      k = m;

    }

j

S __ < y

k

y ≤ __

m

• What does the picture look like in the bottom assertion?

• Does this hold?

– Yes! Because the array is sorted (everything after S[m] is even larger)

j

__ < y y ≤ __

m



Binary Search of an Array

const bsearch = (S: …, y: …): boolean => {

  let j = 0, k = S.length;

  {{ Inv: (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

  while (j !== k) {

    const m = (j + k) / 2n;

    if (S[m] < y) {

      j = m + 1;

    } else {

      k = m;

    }

  }

  return (S[k] === y);

};

j

S __ < y

k

y ≤ __

Does this terminate?

Need to check that k – j decreases

Can see that j ≤ m ≤ k, so

the "then" branch is fine.

Can see that j < k implies m < k
(integer division rounds down), so

the "else" branch is also fine



Loop Invariants



Loop Invariants with Arrays

• Previous example:

{{ Inv: s = sum(S[0 .. j – 1]) … }}     sum of array

{{ Post: s = sum(S[0 .. n – 1]) }}

– in this case, Post is a special case of Inv (where j = n)

– in other words, Inv is a weakening of Post

• Heuristic for loop invariants: weaken the postcondition

– assertion that allows postcondition as a special case

– must also allow states that are easy to prepare



Heuristic for Loop Invariants

• Loop Invariant allows both start and stop states

– describing more states = weakening

{{ P }}

{{ Inv: I }}

while (cond) {

  S

}

{{ Q }}

– usually are many ways to weaken it…

QIP



Loop Invariants with Arrays

• Previous example

{{ Inv: s = sum(S[0 .. j – 1]) … }}     sum of array

{{ Post: s = sum(S[0 .. n – 1]) }}

• Linear search also fits this pattern:

{{ Inv: S[i] ≠ y for any 0 ≤ i < j }}     search an array

{{ Post: (S[i] = y) or (S[i] ≠ y for any 0 ≤ i < n) }}

– a weakening of second part



Searching a Sorted Array

• Suppose we require A to be sorted:

– precondition includes

A[j–1] ≤ A[j] for any 1 ≤ j < n  (where n := A.length)

• Want to find the index k where “x” would be…

– picture would look like this:

0 k n

A __ < x x ≤ __



Searching a Sorted Array

• End with complete knowledge of A[i] vs x

– how can we describe partial knowledge?

– know some elements are smaller and some larger

0 k n

A __ < y y ≤ __

0 k n

A

j

A[i] < y for any 0 ≤ i < j y ≤ A[i] for any k ≤ i < n



Loop Invariants with Arrays

• Previous example

{{ Inv: s = sum(S[0 .. j – 1]) … }}     sum of array

{{ Post: s = sum(S[0 .. n – 1]) }}

• Linear search also fits this pattern:

{{ Inv: S[i] ≠ y for any 0 ≤ i < j }}     search an array

{{ Post: (S[i] = y) or (S[i] ≠ y for any 0 ≤ i < n) }}

• Binary search also still fits this pattern

{{ Inv: (S[i] < y  for any 0 ≤ i < j) and (y ≤ S[i] for any k ≤ i < n) }}

{{ Post: (S[i] < y  for any 0 ≤ i < k) and (y ≤ S[i] for any k ≤ i < n) }}



Loop Invariants

• Heuristic for loop invariants: weaken the postcondition

– assertion that allows postcondition as a special case

– must also allow states that are easy to prepare

• 421 covers complex heuristics for finding invariants…

– for 331, this heuristic is enough

– (will give you the invariant for anything more complex)



Writing Loops



Writing Loops

• Examples so far have been code reviews

– checking correctness of given code

• Steps to write a loop to solve a problem:

1.  Come up with an idea for the loop

2.  Formalize the idea in the invariant

3.  Write the code so that it is correct with that invariant

• Let's see some examples…



Recall: Sum of an Array

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = 0;

  // Inv: r = sum(S[0 .. j-1])

  while (j != S.length) {

    r = S[j] + r;

    j = j + 1;

  }

  return r;

};

r = sum(S[0 .. j-1])
j

S



Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = ??

  // Inv: r = sum(S[0 .. j])

  while (??) {

    r = ??

    j = j + 1;

  }

  return r;

};

How do we fill in the blanks

to make this code correct?

r = sum(S[0 .. j])
j

S



Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = ??

  // Inv: r = sum(S[0 .. j])

• What do we set j to so that sum(S[0 .. j]) = 0?

– must set it to -1:

sum(S[0 .. -1]) = sum([]) = 0

r = sum(S[0 .. j])
j

S



Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = -1;

  // Inv: r = sum(S[0 .. j])

  while (??) {

    …

  }

  {{ Post: r = sum(S[0 .. n-1]) }}

  return r;

};

r = sum(S[0 .. j])
j

S

When do we exit to ensure that

sum([0 .. j]) = sum(S[0 .. n-1])?

Exit when j = n – 1



Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = -1;

  // Inv: r = sum(S[0 .. j])

  while (j !== S.length - 1) {

    {{ r = sum(S[0 .. j]) and j ≠ n – 1 }}

    r = ??

    j = j + 1; 

    {{ r = sum(S[0 .. j]) }}

  }

  return r;

};

r = sum(S[0 .. j])
j

S



Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = -1;

  // Inv: r = sum(S[0 .. j])

  while (j !== S.length - 1) {

    {{ r = sum(S[0 .. j]) and j ≠ n – 1 }}

    r = ??

    {{ r = sum(S[0 .. j+1]) }}

    j = j + 1; 

    {{ r = sum(S[0 .. j]) }}

  }

r = sum(S[0 .. j])
j

S

Let's draw the second picture…



Sum of an Array (version 2)

{{ r = sum(S[0 .. j]) and j ≠ n – 1 }}

    r = ??

    {{ r = sum(S[0 .. j+1]) }}

r = sum(S[0 .. j])
j

S

• What is the picture in the second case?

• What do we add to r to make this hold?

– must add in S[j+1]

r = sum(S[0 .. j+1])
j j+1



Sum of an Array (version 2)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = -1;

  // Inv: r = sum(S[0 .. j])

  while (j !== S.length - 1) {

    r = S[j+1] + r;

    j = j + 1; 

  }

  return r;

};

r = sum(S[0 .. j])
j

S

This code is correct by construction.

Different from r = sum(S[0 .. j-1])
but does the same thing.



Sum of an Array (version 3)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = -1;

  // Inv: r = sum(S[0 .. j])

  while (j !== S.length - 1) {

    j = j + 1; 

    r = ??

  }

  return r;

};

r = sum(S[0 .. j])
j

S

What if we wrote it this way?

Same Inv but increase j at the start.



Sum of an Array (version 3)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = -1;

  // Inv: r = sum(S[0 .. j])

  while (j !== S.length - 1) {

    {{ r = sum(S[0 .. j]) and j ≠ n – 1 }}

    j = j + 1; 

    r = ??

    {{ r = sum(S[0 .. j]) }}

  }

  return r;

};

r = sum(S[0 .. j])
j

S



Sum of an Array (version 3)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = -1;

  // Inv: r = sum(S[0 .. j])

  while (j !== S.length - 1) {

    {{ r = sum(S[0 .. j]) and j ≠ n – 1 }}

    j = j + 1;

    {{ r = sum(S[0 .. j-1]) and j-1 ≠ n – 1 }}

    r = ?? 

    {{ r = sum(S[0 .. j]) }}

  }

r = sum(S[0 .. j])
j

S

Let's draw these pictures…



Sum of an Array (version 3)

{{ r = sum(S[0 .. j-1]) and j – 1 ≠ n – 1 }}

    r = ??

    {{ r = sum(S[0 .. j]) }}

r = sum(S[0 .. j-1])
j

S

• What do we add to r to make this hold?

– must add in S[j]

r = sum(S[0 .. j])
j



Sum of an Array (version 3)

const sum = (S: Array<bigint>): bigint => {

  let r = 0;

  let j = -1;

  // Inv: r = sum(S[0 .. j])

  while (j !== S.length - 1) {

    j = j + 1;

    r = S[j] + r;

  }

  return r;

};

r = sum(S[0 .. j])
j

S

Once the loop idea is formalized,

can fill in the code to make it correct.

Changing Inv or j = …  line (loop idea)

changes the code we need to write.



Max of an Array

const max = (S: Array<bigint>): bigint => {

  let m = ??

  let j = ??

  // Inv: m = max(S[0 .. j-1])

  while (??) {

    ??

    j = j + 1;

  }

  return m;

};

m = max(S[0 .. j-1])
j

S

How do we initialize m & j?

m = max(S[0 .. 0]) is easiest

What case is missing?



Max of an Array

const max = (S: Array<bigint>): bigint => {

  if (S.length === 0) throw new Error('no elements);

  let m = S[0];

  let j = ??

  // Inv: m = max(S[0 .. j-1])

  while (??) {

    ??

    j = j + 1;

  }

  return m;

};

m = max(S[0 .. j-1])
j

S

How do we initialize j?

Want m = max(S[0 .. 0])



Max of an Array

const max = (S: Array<bigint>): bigint => {

  if (S.length === 0) throw new Error('no elements);

  let m = S[0];

  let j = 1;

  // Inv: m = max(S[0 .. j-1])

  while (??) {

    ??

    j = j + 1;

  }

  return m;

};

m = max(S[0 .. j-1])
j

S

When do we exit?

Want m = max(S[0 .. n-1])



Max of an Array

const max = (S: Array<bigint>): bigint => {

  if (S.length === 0) throw new Error('no elements);

  let m = S[0];

  let j = 1;

  // Inv: m = max(S[0 .. j-1])

  while (j !== S.length) {

    ??

    j = j + 1;

  }

  return m;

};

m = max(S[0 .. j-1])
j

S



Max of an Array

const max = (S: Array<bigint>): bigint => {

  if (S.length === 0) throw new Error('no elements);

  let m = S[0];

  let j = 1;

  // Inv: m = max(S[0 .. j-1])

  while (j !== S.length) {

    {{ m = max(S[0 .. j-1]) and j ≠ n }}

    ??

    {{ m = max(S[0 .. j]) }}

    j = j + 1;

  }

m = max(S[0 .. j-1])
j

S



Max of an Array

{{ m = max(S[0 .. j-1]) and j ≠ n }}

    ??

    {{ m = max(S[0 .. j]) }}

m = max(S[0 .. j-1])
j

S

m = max(S[0 .. j])
j

How do we make the second one hold?

Set m = S[j] iff S[j] > m



Max of an Array

const max = (S: Array<bigint>): bigint => {

  if (S.length === 0) throw new Error('no elements);

  let m = S[0];

  let j = 1;

  // Inv: m = max(S[0 .. j-1])

  while (j !== S.length) {

    if (S[j] > m)

      m = S[j];

    j = j + 1;

  }

  return m;

};

m = max(S[0 .. j-1])
j

S



Example: Sorting Negative, Zero, Positive

• Reorder an array so that

– negative numbers come first, then zeros, then positives

(not necessarily fully sorted)

/**

 * Reorders A into negatives, then 0s, then positive

 * @modifies A

 * @effects leaves same integers in A but with

 *   A[j] < 0 for 0 <= j < i

 *   A[j] = 0 for i <= j < k

 *   A[j] > 0 for k <= j < n

 * @returns the indexes (i, k) above

 */

const sortPosNeg = (A: bigint[]): [bigint,bigint] =>



Example: Sorting Negative, Zero, Positive

// @effects leaves same numbers in A but with

//   A[j] < 0 for 0 <= j < i

//   A[j] = 0 for i <= j < k

//   A[j] > 0 for k <= j < n

Let’s implement this…

– what was our heuristic for guessing an invariant?

– weaken the postcondition

< 0 = 0 > 0

i k n0



Example: Sorting Negative, Zero, Positive

How should we weaken this for the invariant?

– needs allow elements with unknown values

initially, we don’t know anything about the array values

< 0 = 0 > 0?

< 0 = 0 > 0?

< 0 = 0 > 0?

< 0 = 0 > 0 ?



Example: Sorting Negative, Zero, Positive

Our Invariant:

   A[𝓁] < 0 for any 0 ≤ 𝓁 < i

   A[𝓁] = 0 for any i ≤ 𝓁 < j

   (no constraints on A[𝓁] for j ≤ 𝓁 < k)

   A[𝓁] > 0 for any k ≤ 𝓁 < n

< 0 = 0 > 0

i k n0

?

j



Example: Sorting Negative, Zero, Positive

• Let’s try figuring out the code to make it correct

• Figure out the code for

– how to initialize

– when to exit

– loop body

< 0 = 0 > 0

i k n0

?

j



?

Example: Sorting Negative, Zero, Positive

• Will have variables i, j, and k with i ≤ j ≤ k

• How do we set these to make it true initially?

– we start out not knowing anything about the array values

– set i = j = 0 and k = n

< 0 = 0 > 0

i k n0

?

j

i k
n0

j



Example: Sorting Negative, Zero, Positive

• Set i = j = 0 and k = n to make this hold initially

• When do we exit?

– purple is empty if j = k

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i

k

n0 j



Sort Positive, Zero, Negative

let i = 0;

let j = 0;

let k = A.length;

{{ Inv: A[𝓁] < 0 for any 0 ≤ 𝓁 < i and A[𝓁] = 0 for any i ≤ 𝓁 < j
             A[𝓁] > 0 for any k ≤ 𝓁 < n and 0 ≤ i ≤ j ≤ k ≤ n}}

while (j < k) {

  ...

}

{{ A[𝓁] < 0 for any 0 ≤ 𝓁 < i and A[𝓁] = 0 for any i ≤ 𝓁 < j
     A[𝓁] > 0 for any j ≤ 𝓁 < n }}

return [i, j];

< 0 = 0 > 0

i k n0

?

j



Example: Sorting Negative, Zero, Positive

• How do we make progress?

– try to increase j by 1 or decrease k by 1

• Look at A[j] and figure out where it goes

• What to do depends on A[j]
– could be < 0, = 0, or > 0

< 0 = 0 > 0

i k n0

?

j



Example: Sorting Negative, Zero, Positive

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i k n0

?

j

Set j = j0 + 1

Swap A[i] and A[j]
Set i = i0 + 1
and j = j0 + 1

Swap A[j] and A[k–1]
Set k = k0 – 1



Sort Positive, Zero, Negative

{{ Inv: A[𝓁] < 0 for any 0 ≤ 𝓁 < i and A[𝓁] = 0 for any i ≤ 𝓁 < j
             A[𝓁] > 0 for any k ≤ 𝓁 < n and 0 ≤ i ≤ j ≤ k ≤ n }}

while (j !== k) {

  if (A[j] === 0) {

    j = j + 1;

  } else if (A[j] < 0) {

    swap(A, i, j);

    i = i + 1;

    j = j + 1;

  } else {

    swap(A, j, k-1);

    k = k – 1;

  }

}



Sorted Matrix Search

Given a sorted matrix M, with m rows and n cols,

where every row and every column is sorted,

find out whether a given number x is in the matrix

(darker color means larger)



Sorted Matrix Search

Given a sorted matrix M, with m rows and n cols,

where every row and every column is sorted,

find out whether a given number x is in the matrix

Idea: Trace the contour between the numbers ≤ x and > x
in each row to see if x appears.

__ < x x ≤ __



Sorted Matrix Search

Given a sorted matrix M, with m rows and n cols,

where every row and every column is sorted,

find out whether a given number x is in the matrix

Invariant: at the left-most entry with x ≤ __ in the row

– for each row i, this holds for exactly one column j

i

j



Sorted Matrix Search

Invariant: at the left-most entry with x ≤ __ in the row

– for each row i, this holds for exactly one column j

Initialization: how do we get this to hold for i = 0?

– could be anywhere in the first row

Need to search to find this location

i

j



Sorted Matrix Search

New Goal: find smallest j with x ≤ M[0, k] for any j ≤ k < n

– will need a loop...

How do we find an invariant for that loop?

– try weakening this assertion (allow any j, not just smallest)

– decrease j until x ≤ M[0, j-1] does not hold

i

j



Sorted Matrix Search

New Goal: find smallest j with x ≤ M[0, k] for any j ≤ k < n

let i = 0;

let j = ??

{{ Inv: x ≤ M[0, k] for any j ≤ k < n }}

while (??)

??

{{ Post: M[0, k] < x for any 0 ≤ k < j and x ≤ M[0, k] for any j ≤ k < n }}

How do we set j to make Inv hold initially?
– range is empty when j = n

i

j



Sorted Matrix Search

New Goal: find smallest j with x ≤ M[0, k] for any j ≤ k < n

let i = 0;

let j = n;

{{ Inv: x ≤ M[0, k] for any j ≤ k < n }}

while (??)

??

{{ Post: M[0, k] < x for any 0 ≤ k < j and x ≤ M[0, k] for any j ≤ k < n }}

How do we exit so that the postcondition holds?
– can no longer decrease j when j = 0 or M[0, j-1] < x

i

j



Sorted Matrix Search

New Goal: find smallest j with x ≤ M[0, k] for any j ≤ k < n

let i = 0;

let j = n;

{{ Inv: x ≤ M[0, k] for any j ≤ k < n }}

while (j>0 && x <= M[0][j-1])

??

{{ Post: M[0, k] < x for any 0 ≤ k < j and x ≤ M[0, k] for any j ≤ k < n }}

Anything needed in the loop body?

(That is, other than j = j - 1?)

i

j



Sorted Matrix Search

New Goal: find smallest j with x ≤ M[0, k] for any j ≤ k < n

{{ Inv: x ≤ M[0, k] for any j ≤ k < n }}

while (j>0 && x <= M[0][j-1]) {

{{ x ≤ M[0, k] for any j ≤ k < n and j > 0 and x ≤ M[0, j-1] }}

??

j = j – 1;

{{ x ≤ M[0, k] for any j ≤ k < n }}

}



Sorted Matrix Search

New Goal: find smallest j with x ≤ M[0, k] for any j ≤ k < n

{{ Inv: x ≤ M[0, k] for any j ≤ k < n }}

while (j>0 && x <= M[0][j-1]) {

{{ x ≤ M[0, k] for any j ≤ k < n and j > 0 and x ≤ M[0, j-1] }}

??

{{ x ≤ M[0, k] for any j – 1 ≤ k < n }}

j = j – 1;

{{ x ≤ M[0, k] for any j ≤ k < n }}

}



New Goal: find smallest j with x ≤ M[0, k] for any j ≤ k < n

{{ x ≤ M[0, k] for any j ≤ k < n and j > 0 and x ≤ M[0, j-1] }}

??

{{ x ≤ M[0, k] for any j – 1 ≤ k < n }}

Nothing is missing!

Sorted Matrix Search

j

j



Sorted Matrix Search

New Goal: find smallest j with x ≤ M[0, k] for any j ≤ k < n

let i = 0;

let j = n;

{{ Inv: x ≤ M[0, k] for any j ≤ k < n }}

while (j>0 && x <= M[0][j-1])

j = j - 1;

{{ Post: M[0, k] < x for any 0 ≤ k < j and x ≤ M[0, k] for any j ≤ k < n }}

Can now check if M[0, j] = x
– if not, then it is not in the first row

– move on to the second row...

i

j



Moving from row i to row i+1

What does vertical sorting tell us about row i+1?
– right side is guaranteed to satisfy " x ≤ __ "

– left side not guaranteed to satisfy " __ < x "

Sorted Matrix Search

j

i

i+1

__ < x x ≤ __



Moving from row i to row i+1

Next row looks like this

Sorted Matrix Search

j

i

i+1

__ < x x ≤ __

x ≤ __



Moving from row i to row i+1

How do we restore the invariant?

– find the index j with M[i+1, j-1] < x ≤ M[i+1, j]

This is the same problem as before!

– move left until begining or M[i+1, j-1] < x holds

Sorted Matrix Search

j

i+1 x ≤ __
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let i = 0;

let j = n;

... move j to left...

if (M[i][j] === x) return true;

{{ Inv: (x is not in row k for any 0 ≤ k ≤ i) and

(M[i, k] < x for any 0 ≤ k < j) and (x ≤ M[i, k] for any j ≤ k < n) }}

while (i+1 !== n) {

...

}

return false;

Inv says we ruled out rows 0 .. i 
and col j is line between _ < x and x ≤ _

i

j
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let i = 0;

let j = n;

... move j to left...

if (M[i][j] === x) return true;

{{ Inv: (x is not in row k for any 0 ≤ k ≤ i) and

(M[i, k] < x for any 0 ≤ k < j) and (x ≤ M[i, k] for any j ≤ k < n) }}

while (i+1 !== n) {

i = i + 1;

... move j to the left...

if (M[i][j] === x) return true;

}

return false;
We can avoid writing this code twice

(without writing a separate function)…

Don't try this at home!

i

j
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let i = 0;

let j = n;

while (i !== n) {

... move j to left...

if (M[i][j] === x) return true;

{{ Inv: (x is not in row k for any 0 ≤ k ≤ i) and

(M[i, k] < x for any 0 ≤ k < j) and (x ≤ M[i, k] for any j ≤ k < n) }}

i = i + 1;

}

return false;

Inv is now checked in the middle of the loop!

Loop condition was also changed
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let i = 0;

let j = n;

while (i !== n) {

{{ Inv: x ≤ M[i, k] for any j ≤ k < n }}

while (j > 0 && x <= M[i][j-1])

j = j - 1;

if (M[i][j] === x)

return true;

{{ Inv: (x is not in row k for any 0 ≤ k ≤ i) and

(M[i, k] < x for any 0 ≤ k < j) and (x ≤ M[i, k] for any j ≤ k < n) }}

i = i + 1;

}

return false;

Final version is 9 lines of code.

Requires 6 lines of invariant assertions!


	Slide 1: Arrays
	Slide 2: Indexing
	Slide 3: Linked Lists in Memory
	Slide 4: Faster Implementation of at
	Slide 5: Faster Implementation of at
	Slide 6: Access By Index
	Slide 7: Recall: Sum List With a Loop
	Slide 8: Sum List by Index
	Slide 9: Sum List by Index
	Slide 10: Sublists
	Slide 11: Sublists
	Slide 12: Sublists
	Slide 13: Sum List by Index
	Slide 14: Recall: Sum List With a Loop
	Slide 15: Recall: Sum List With a Loop
	Slide 16: Using Sublists With Loops
	Slide 17: Using Sublists With Loops
	Slide 18: Sum of an Array
	Slide 19: Sum of an Array
	Slide 20: Sum of an Array
	Slide 21: Sum of an Array
	Slide 22: Sum of an Array
	Slide 23: Sum of an Array
	Slide 24: Sum of an Array
	Slide 25: Sum of an Array
	Slide 26: Sum of an Array
	Slide 27: Sum of an Array
	Slide 33: Sum of an Array
	Slide 34: Sum of an Array
	Slide 35: Linear Search of a List
	Slide 36: Linear Search of an Array
	Slide 37: Linear Search of an Array
	Slide 38: Linear Search of an Array
	Slide 39: Linear Search of an Array
	Slide 40: Facts About Sublists
	Slide 41: Reasoning Toolkit
	Slide 42: Facts About Sublists
	Slide 43: Visual Presentation of Facts
	Slide 44: Recall: Linear Search of an Array
	Slide 45: Linear Search of an Array
	Slide 46: Linear Search of an Array
	Slide 47: Linear Search of an Array
	Slide 48: Linear Search of an Array
	Slide 49: Linear Search of an Array
	Slide 50: Linear Search of an Array
	Slide 51: Linear Search of an Array
	Slide 52: Linear Search of an Array
	Slide 53: Linear Search of an Array
	Slide 54: Finding an Element in an Array
	Slide 55: Finding an Element in a Sorted Array
	Slide 56: Binary Search of an Array
	Slide 57: Binary Search of an Array
	Slide 58: Binary Search of an Array
	Slide 59: Binary Search of an Array
	Slide 60: Binary Search of an Array
	Slide 61: Binary Search of an Array
	Slide 62: Binary Search of an Array
	Slide 63: Binary Search of an Array
	Slide 64: Binary Search of an Array
	Slide 65: Binary Search of an Array
	Slide 66: Binary Search of an Array
	Slide 67: Loop Invariants
	Slide 68: Loop Invariants with Arrays
	Slide 69: Heuristic for Loop Invariants
	Slide 70: Loop Invariants with Arrays
	Slide 71: Searching a Sorted Array
	Slide 72: Searching a Sorted Array
	Slide 73: Loop Invariants with Arrays
	Slide 74: Loop Invariants
	Slide 75: Writing Loops
	Slide 76: Writing Loops
	Slide 77: Recall: Sum of an Array
	Slide 78: Sum of an Array (version 2)
	Slide 79: Sum of an Array (version 2)
	Slide 80: Sum of an Array (version 2)
	Slide 81: Sum of an Array (version 2)
	Slide 82: Sum of an Array (version 2)
	Slide 83: Sum of an Array (version 2)
	Slide 84: Sum of an Array (version 2)
	Slide 85: Sum of an Array (version 3)
	Slide 86: Sum of an Array (version 3)
	Slide 87: Sum of an Array (version 3)
	Slide 88: Sum of an Array (version 3)
	Slide 89: Sum of an Array (version 3)
	Slide 90: Max of an Array
	Slide 91: Max of an Array
	Slide 92: Max of an Array
	Slide 93: Max of an Array
	Slide 94: Max of an Array
	Slide 95: Max of an Array
	Slide 96: Max of an Array
	Slide 97: Example: Sorting Negative, Zero, Positive
	Slide 98: Example: Sorting Negative, Zero, Positive
	Slide 99: Example: Sorting Negative, Zero, Positive
	Slide 100: Example: Sorting Negative, Zero, Positive
	Slide 101: Example: Sorting Negative, Zero, Positive
	Slide 102: Example: Sorting Negative, Zero, Positive
	Slide 103: Example: Sorting Negative, Zero, Positive
	Slide 104: Sort Positive, Zero, Negative
	Slide 105: Example: Sorting Negative, Zero, Positive
	Slide 106: Example: Sorting Negative, Zero, Positive
	Slide 107: Sort Positive, Zero, Negative
	Slide 112: Sorted Matrix Search
	Slide 113: Sorted Matrix Search
	Slide 114: Sorted Matrix Search
	Slide 115: Sorted Matrix Search
	Slide 116: Sorted Matrix Search
	Slide 117: Sorted Matrix Search
	Slide 118: Sorted Matrix Search
	Slide 119: Sorted Matrix Search
	Slide 120: Sorted Matrix Search
	Slide 121: Sorted Matrix Search
	Slide 122: Sorted Matrix Search
	Slide 123: Sorted Matrix Search
	Slide 124: Sorted Matrix Search
	Slide 125: Sorted Matrix Search
	Slide 126: Sorted Matrix Search
	Slide 127: Sorted Matrix Search
	Slide 128: Sorted Matrix Search
	Slide 129: Sorted Matrix Search
	Slide 130: Sorted Matrix Search

