
Specifications

James Wilcox and Kevin Zatloukal

CSE 331

Specifications

Specifications

• Correctness requires a definition of the correct answer

• Description must be precise

– can’t have disagreement about what is correct

• Informal descriptions (English) are usually imprecise

– necessary to “formalize” the English

turn the English into a precise mathematical definition

– professionals are very good at this

usually just give English definitions

important skill to practice

– we will start out completely formal to make it easier

Kinds of Specifications

• Imperative specification says how to calculate the answer

– lays out the exact steps to perform to get the answer

• Declarative specification says what the answer looks like

– does not say how to calculate it

– up to us to ensure that our code satisfies the spec

• Can implement a different imperative specification

– again, up to us to ensure that our code satisfies the spec

Example: Imperative Specification

• Absolute value: |x| = x if x ≥ 0 and –x otherwise

– definition is an “if” statement

 const abs = (x: bigint): bigint => {

 if (x >= 0n) {

 return x;

 } else {

 return –x;

 }

 }
just translating math to TypeScript

Example: Declarative Specification

• Subtraction (a – b): return x such that b + x = a

– can see that b + (a – b) = b + a – b = a

 const sub = (a : bigint, b: bigint): bigint => {

 ??

 }

we are left to figure out how to do this…

and convince ourselves it satisfies the spec

Example: Declarative Specification

• Square root of x is number y such that y2 = x

– not all positive integers have integer square roots,

so… let’s round up

– (y – 1)2 ≤ x ≤ y2

smallest integer y such that x ≤ y2

 const sqrt = (x: bigint): bigint => {

 ??

 } we are left to figure out how to do this…

and convince ourselves it satisfies the spec

Example: Declarative Specification

• Absolute value |x| is an integer y such that

– y ≥ x

– y ≥ –x

– y = x or y = –x

 const abs = (x: bigint): bigint => {

 if (x >= 0) {

 return x;

 } else {

 return –x;

 }

 }

requires some thinking to make sure this code

returns a number with the properties above

Example: Imperative Specification

• From HW3: Dijkstra's Algorithm

steps are described fully

(just translate to TypeScript)

"Straight From the Spec"

• If imperative, just translate math into code

– TypeScript here, but could also be Java

– we often call this "straight from the spec"

• if declarative (or implementing different imperative spec),

then we will need new tools for checking its correctness

Recall: Kinds of Specifications

• Imperative specification says how to calculate the answer

– lays out the exact steps to perform to get the answer

• Declarative specification says what the answer looks like

– does not say how to calculate it

– up to us to ensure that our code satisfies the spec

• Can implement a different imperative specification

– again, up to us to ensure that our code satisfies the spec

Examples from the Java APIs

java.util.Map — set of (key, value) pairs

Imperative

Examples from the Java APIs

java.util.Map — set of (key, value) pairs

Imperative

Declarative

Examples from the Java APIs

java.util.Object

Declarative

Next Up…

• Toolkit for writing imperative specifications

– define math for data and code

write specifications that are language independent

(don't want a toolkit that only works for TypeScript)

– describe how to translate imperative specs into TypeScript

try to make the translations as straightforward as possible (fewer mistakes)

– mention new TypeScript features when related

critical to understand what bugs the type system caches and which it does not

• Will look at declarative specifications later

Math Notation

Basic Data Types in Math

• In math, the basic data types are “sets”

– sets are collections of objects called elements

– write x ∈ S to say that “x” is an element of set “S”,

and x ∉ S to say that it is not.

• Examples:

 x ∈ ℤ x is an integer

 x ∈ ℕ x is a non-negative integer (natural)

 x ∈ ℝ x is a real number

 x ∈ 𝔹 x is T or F (boolean)

 x ∈ 𝕊 x is a character

 x ∈ 𝕊* x is a string

non-standard names

Basic Data Types in TypeScript

Condition Math TypeScript Up to Us

integer x ∈ ℤ bigint

natural x ∈ ℕ bigint non-negative

real x ∈ ℝ number

boolean x ∈ 𝔹 boolean

character x ∈ 𝕊 string length 1

string x ∈ 𝕊* string

we will often write

x : ℤ instead of x ∈ ℤ

– only subtraction on non-negative can produce negative

Ways to Create New Types In Math

• Union Types 𝕊* ∪ ℕ

– contains every object in either (or both) of those sets

– e.g., all strings and natural numbers

• If x ∈ ℕ ∪ 𝕊*, then x could be a natural or string

• Two sets can contain common elements

– in this case, the sets are disjoint

Ways to Create New Types in TypeScript

• Union Types string | bigint

– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

// can I call isPrime(x)?

• We can check the type of x using “typeof”

– TypeScript understands these expressions

– will “narrow” the type of x to reflect that information

Type Narrowing With “If” Statements

• Union Types string | bigint

– can be either one of these

• How do we work with this code?

const x: string | bigint = …;

if (typeof x === "bigint") {

 console.log(isPrime(x)) // okay! x is a bigint

} else {

 … // x is a string

}

Type Narrowing vs Casting

const x: string | bigint = …;

if (typeof x === “bigint”) {

 console.log(isPrime(x)) // okay! x is a bigint

} else {

 … // x is a string

}

• Note that this does not require a type cast

– TypeScript knows x is a bigint inside the “if” (narrowing)

• 331: there are no type casts (won’t even show syntax)

– unlike Java, TypeScript casts are unchecked at runtime

– seem designed to create extremely painful debugging

Type Narrowing Gotcha

const f = (x: bigint): string | bigint => …;

if (typeof f(x) === “bigint”) {

 console.log(isPrime(f(x))) // why not allowed?

}

• TypeScript will (properly) reject this

– no guarantee that f(x) returns the same value both times!

Type Narrowing of Function Calls

const f = (x: bigint): string | bigint => …;

const y = f(x);

if (typeof y === “bigint”) {

 console.log(isPrime(y)) // this works now

}

• TypeScript can see that the two values are the same

• Functions that return different values for the same

inputs are confusing!

– maybe better to avoid that

Compound Types In Math

• Compound types combine multiple data types

– multiple ways build them

• Record Types {x : ℕ, y : ℕ}

– record with fields “x” and “y” each containing a number

– e.g., {x: 3, y: 5}

• Note that {x: 3, y: 5} = {y: 5, x: 3} in math

– field names matter, not order

– note that these are not "==" in JavaScript

in math, “=“ means same values

in JavaScript, "==" is reference equality

Record Types in TypeScript

• Record Types {x: bigint, y: bigint}

– anything with at least fields “x” and “y”

• Retrieve a part by name:

const t: {x: bigint, y: bigint} = … ;

console.log(t.x);

Optional Fields in TypeScript

• Records can have optional fields

type T = {x: bigint, y?: bigint};

const t: T = {x: 1n};

– type of “ t.y ” is “ bigint | undefined ”

• Functions can have optional arguments

const f = (a: bigint, b?: bigint): bigint => {

 console.log(b);

};

– type of “ b ” is “ bigint | undefined ”

Compound Types In Math

• Record Types {x : ℕ, y : ℕ}

– record with fields “x” and “y” each containing a number

– e.g., {x: 3, y: 5}

• Tuple Types ℕ ⨉ ℕ

– pair of two natural numbers, e.g., (5, 7)

– can do tuples of 3, 4, or more elements also

• Mostly equivalent alternatives

– both let us put parts together into a larger object

– record distinguishes parts by name

– tuple distinguishes parts by order

Retrieving Part of a Tuple

• To refer to tuple parts, we must give them names

• Tuple Types ℕ ⨉ ℕ

Let (a, b) := t. Suppose we know that t = (5, 7)

 Then, we have a = 5 and b = 7

• Tuple Types [bigint, bigint]

const t: [bigint, bigint] = …;

const [a, b] = t;

console.log(a); // first part of t

“:=” means a definition

Simple Functions in Math

• Simplest function definitions are single expressions

• Will write them in math like this:

 double : ℕ → ℕ

 double(n) := 2n

– first line declares the type of double function

takes a natural number input to a natural number output

– second line shows the calculation

know that "n" is a natural number from the first line

– will often put the type in the text before the definition, e.g.,

The function double : ℕ → ℕ is defined by…

 double(n) := 2n

Simple Functions in Math

• Another example:

 dist : {x: ℝ, y: ℝ} → ℝ

 dist(p) := (p.x2 + p.y2)1/2

– first line tells us that "p" is a record and "p.x" is a real number

• Can define short-hand for types in math also

 type Point := {x: ℝ, y: ℝ}

 dist : Point → ℝ

 dist(p) := (p.x2 + p.y2)1/2

Complex Functions in Math

• Most interesting functions are not simple expressions

– need to use different expressions in different cases

• Can use side-conditions to split into cases

 abs : ℝ → ℝ

 abs(x) := x if x ≥ 0

 abs(x) := –x if x < 0

– conditions must be exclusive and exhaustive

we do not want to require on order to determine which applies

– there is a better way to do this in many cases…

Pattern Matching

• Can also define functions by “pattern matching”

 double : ℕ → ℕ

 double(0) := 0

 double(n+1) := double(n) + 2

– first case matches only 0

– second case matches numbers 1 more than some n : ℕ …
double(6) = double(5+1) so it matches with n = 5

since n ≥ 0, we have n+1 ≥ 1, so it matches 1, 2, 3, …

– pattern “n+2” would match 2, 3, 4, …

• Simplifies the math in multiple ways…

Pattern Matching on Natural Numbers

• Pattern matching definition

 double(0) := 0

 double(n+1) := double(n) + 2

 is simpler than using side conditions

 double(n) := 0 if n = 0

 double(n) := double(n-1) + 2 if n > 0

– e.g., need to explain why double(n-1) is legal

easy in this case, but it gets harder

• We will prefer pattern matching whenever possible

Pattern Matching on Booleans

• Booleans have only two legal values: T and F

• Can pattern match just by listing the values:

– the function not : 𝔹 → 𝔹 is defined as follows:

 not(T) := F

 not(F) := T

– negates a boolean value

– no simpler way to define this function!

Pattern Matching on Records

• Can pattern match on individual fields of a record

 type Steps := {n : ℕ, fwd : 𝔹}

 change : Steps → ℤ

 change({n: m, fwd: T}) := m

 change({n: m, fwd: F}) := –m

– clear that the rules are exclusive and exhaustive

• Can match on multiple parameters

– e.g., change({n: m+5, fwd: T}) := 2m

– just make sure the rules are exclusive and exhaustive

Pattern Matching in TypeScript

• TypeScript does not provide pattern matching

– some other languages do! (see 341)

• We must translate into “if”s on our own

type Steps = {n: number, fwd: boolean};

const change = (s: Steps) => {

 if (s.fwd) {

 return s.n;

 } else {

 return –s.n;

 }

};

still straight from the spec

but easy to make mistakes

Pattern Matching in TypeScript

 double(0) := 0

 double(n+1) := double(n) + 2

• Also need to be careful with natural numbers

// m is non-negative

const double = (m: bigint) => {

 if (m === 0n) {

 return 0n;

 } else {

 return double(m – 1n) + 2n;

 }

};

– pattern matching uses “n+1” but the code uses “m” (or “n”)

sadly, TypeScript will not let “n+1” be the argument value

spec says double(n)

but code says double(m – 1)

Code Without Mutation

• Saw all types of code without mutation:

– straight-line code

– conditionals

– recursion

• This is all that there is!

– can write anything computable with just these

• Saw TypeScript syntax for these already…

Code Without Mutation

Example function with all three types

 // n must be a non-negative integer

 const f = (m: bigint): bigint => {

 if (m === 0n) {

 return 1n;

 } else {

 const n = m – 1n;

 return 2n * f(n);

 }

 };

What does this compute?

f(m) = 2m

f : ℕ → ℕ

f(0) := 1
f(n+1) := 2 · f(n)

Summary of Last Time

• Specification is necessary to even discuss correctness

• Goals: develop a toolkit for

– writing (imperative) specs that are fully precise

– writing specs in a language-independent manner

• Solution: rely on standard mathematical notation

– familiar data types: numbers, records, tuples

– familiar coding: expressions, if statements, recursion

– unfamiliar(?): pattern matching

• Most important data type is missing…

all but pattern matching

translate easily to TypeScript

Inductive Data Types

Inductive Data Types

• Previous saw records, tuples, and unions

– very useful but limited

can only create types that are “small” in some sense

– missing one more way of defining types

arguably the most important

• One critical element is missing: recursion
Java classes can have fields of same type, but records cannot

• Inductive data types are defined recursively

– combine union with recursion

Inductive Data Types

• Describe a set by ways of creating its elements

– each is a “constructor”

type T := C(x : ℤ) | D(x : ℤ, y : T)

– second constructor is recursive

– can have any number of arguments (even none)

will leave off the parentheses when there are none

• Examples of elements

C(1)

D(2, C(1))

D(3, D(2, C(1)))

in math, these are not function calls

Inductive Data Types

• Each element is a description of how it was made

C(1)

D(2, C(1))

D(3, D(2, C(1)))

• Equal when they were made exactly the same way

– C(1) ≠ C(2)

– D(2, C(1)) ≠ D(3, C(1))

– D(2, C(1)) ≠ D(2, C(2))

– D(1, D(2, C(3))) = D(1, D(2, C(3)))

Natural Numbers

 type ℕ := zero | succ(n : ℕ)

• Inductive definition of the natural numbers

zero 0

succ(zero) 1

succ(succ(zero)) 2

succ(succ(succ(zero))) 3

The most basic set we have is defined inductively!

Only possible to make non-negative integers

Even Natural Numbers

 type 𝔼 := zero | two-more(n : 𝔼)

• Inductive definition of the even natural numbers

zero 0

two-more(zero) 2

two-more(two-more(zero)) 4

two-more(two-more(two-more(zero))) 6

much better notation

 type List := nil | cons(x : ℤ, L : List)

• Inductive definition of lists of integers

nil

cons(3, nil)

cons(2, cons(3, nil))

cons(1, cons(2, cons(3, nil)))

Lists

1 2 3

Our most important data type!

 type List := nil | cons(x : ℤ, L : List)

• We will use:

– "x :: L" to mean "cons(x, L)"

– "[1, 2, 3]" to mean "1 :: 2 :: 3 :: nil"

• Examples:

nil nil []

cons(3, nil) 3 :: nil [3]

cons(2, cons(3, nil)) 2 :: 3 :: nil [2, 3]

cons(1, cons(2, cons(3, nil))) 1 :: 2 :: 3 :: nil [1, 2, 3]

Shorthand Notation for Lists

Inductive Data Types in TypeScript

• TypeScript does not natively support inductive types

– some “functional” languages do (e.g., OCaml and ML)

• We must think of a way to cobble them together…

– our answer is a design pattern…

Design Patterns

• Introduced in the book of that name

– written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

– worked in C++ and SmallTalk

• Found that they independently developed

many of the same solutions to recurring problems

– wrote a book about them

• Many are problems with OO languages

– authors worked in C++ and SmallTalk

– some things are not easy to do in those languages

Type Narrowing with Records

• Use a literal field to distinguish records types

– require the field to have one specific value

– called a “tag” field

cleanest way to make unions of records

type T1 = {kind: "T1", a: bigint, b: number};

type T2 = {kind: "T2", a: bigint, b: string};

const x: T1 | T2 = …;

if (x.kind === "T1") { // legal for either type

 console.log(x.b); // must be T1… x.b is a number

} else {

 console.log(x.b); // must be T2… x.b is a string

}

Inductive Data Type Design Pattern

type T := C(x : ℤ) | D(x : 𝕊* , t : T)

• Implement in TypeScript as

type T = {kind: "C", x: number}

 | {kind: "D", x: string, t: T};

Inductive Data Type Design Pattern

type T := A | B | C(x : ℤ) | D(x : 𝕊*, t : T)

• Implement in TypeScript as

type T = {kind: "A"}

 | {kind: "B"}

 | {kind: "C", x: bigint}

 | {kind: "D", x: string, t: T};

Inductive Data Types in TypeScript

type List := nil | cons(x : ℤ, L : List)

• Implemented in TypeScript as

type List = {kind: "nil"}

 | {kind: "cons", hd: bigint, tl: List};

• How do I check if my list is empty?

if (mylist.kind === "nil") {

 …

}

Inductive Data Types in TypeScript

• Make this look more like math notation…

type List = {kind: "nil"}

 | {kind: "cons", hd: bigint, tl: List};

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => {

 return {kind: "cons", hd: hd, tl: tl};

}

– use only these two functions to create Lists

do not create the records directly

– note that we only have one instance of nil

this is called a “singleton” (there is a design pattern for ensuring this)

Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => { .. };

• Can now write code like this:

const L: List = cons(1, cons(2, nil));

Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: Readonly<List> = {kind: "nil"};

const cons = (hd: bigint, tl: List): List => { .. };

• Still not perfect:

– JS “===” (references to same object) does not match “=”

cons(1, cons(2, nil)) === cons(1, cons(2, nil)) // false!

– need to define an equal function for this

will see this later…

Functions Defined on Inductive Data Types

• We need recursion to define interesting functions

• Inductive types fit esp. well with pattern matching

– every object is created using some constructor

– match based on which constructor was used

Length of a List

 type List := nil | cons(hd: ℤ, tl: List)

• Mathematical definition of list length:

len : List → ℕ

len(nil) := 0

len(x :: L) := 1 + len(L)

– any list is either nil or x :: L for some x and L

– cases are exclusive and exhaustive

Length of a List

• Mathematical definition of length

 len(nil) := 0

 len(x :: L) := 1 + len(L)

• Translation to TypeScript

const len = (S: List): bigint => {

 if (S.kind === "nil") {

 return 0n;

 } else {

 return 1n + len(S.tl);

 }

}; TypeScript will see that this is valid

since S.kind != "nil"

Swapping Elements in a List

 type List := nil | cons(hd: ℤ, tl: List)

• Function that swaps adjacent elements in a list:

swap : List → List

swap(nil) := nil

swap(x :: nil) := x :: nil

swap(x :: y :: L) := y :: x :: swap(L)

– any list is either nil or x :: nil or x :: y :: L for some x, y and L

– cases are exclusive and exhaustive

Swapping Elements in a List

swap(nil) := nil

swap(x :: nil) := x :: nil

swap(x :: y :: L) := y :: x :: swap(L)

• Translation to TypeScript

const swap = (S: List): List => {

 if (S.kind === "nil") {

 return nil;

 } else if (S.tl.kind === "nil") {

 return cons(S.hd, nil);

 } else {

 return cons(S.tl.hd, cons(S.hd, swap(S.tl.tl)));

 }

};

= S

TypeScript will see that these are valid since

S.kind != "nil" and S.tl.kind != "nil"

Structural Recursion

• Examples only recurse on parts of the input

 len(x :: L) := 1 + len(L)

– call on x :: L recurses on L

 swap(x :: y :: L) := y :: x :: swap(L)

– call on x :: y :: L recurses on L

– such cases are called "structural recursion"

• Guarantees no infinite recursion!

– one argument gets strictly smaller on each call

– restrict ourselves to structural recursion in math and TS

Formalizing Specifications

Formalizing a Specification

• Sometimes the instructions are written in English

– English is often imprecise or ambiguous

• First step then is to “formalize” the specification:

– translate it into math with a precise meaning

• Best to start by looking at some examples

– try to spot a pattern

– that usually indicates recursion

Definition of Sum of Values in a List

• Sum of a List: “add up all the values in the list”

• Look at some examples…

L sum(L)

nil 0

3 :: nil 3

2 :: 3 :: nil 2+3

1 :: 2 :: 3 :: nil 1+2+3

… …

Definition of Sum of Values in a List

• Look at some examples…

L sum(L)

nil 0

3 :: nil 3

2 :: 3 :: nil 2+3

1 :: 2 :: 3 :: nil 1+2+3

… …

• Mathematical definition of sum:

sum(nil) :=

sum(x :: L) :=

Definition of Sum of Values in a List

L sum(L)

1 :: 2 :: 3 :: nil 1+2+3

• Mathematical definition of sum:

sum(nil) := 0

sum(x :: L) := x + sum(L)

• Check that this works on the examples…

sum(1 :: 2 :: 3 :: nil)

 = 1 + sum(2 :: 3 :: nil) def of sum (2nd line)

 = 1 + 2 + sum(3 :: nil) def of sum (2nd line)

 = 1 + 2 + 3 + sum(nil) def of sum (2nd line)

 = 1 + 2 + 3 def of sum (1st line)

Sum of Values in a List

• Mathematical definition of sum

 sum(nil) := 0

 sum(x :: L) := x + sum(L)

• Translation to TypeScript

const sum = (S: List): bigint => {

 if (S.kind === “nil”) {

 return 0n;

 } else {

 return S.hd + sum(S.tl);

 }

};

Definition of List Equality

• Equal lists: “built with same steps”

• Look at some examples…

L R equal(L, R)

nil nil

nil 1 :: nil

1 :: nil nil

1 :: nil 1 :: nil

2 :: nil 3 :: nil

1 :: 2 :: nil 1 :: 3 :: nil

Definition of List Equality

L R equal(L, R)

nil nil T

nil 1 :: nil F

1 :: nil nil F

1 :: nil 1 :: nil T

2 :: nil 3 :: nil F

1 :: 2 :: nil 1 :: 3 :: nil F

• Mathematical definition of equal : (List, List) → 𝔹

equal(nil, nil) := T

equal(nil, y :: R) := F

equal(x :: L, nil) := F

equal(x :: L, y :: R) := (x = y) and equal(L, R)

Definition of Sum of Values in a List

L R equal(L, R)

1 :: 2 :: nil 1 :: 3 :: nil F

• Mathematical definition of equal : (List, List) → 𝔹

equal(nil, nil) := T

equal(nil, y :: R) := F

equal(x :: L, nil) := F

equal(x :: L, y :: R) := (x = y) and equal(L, R)

• Check that this works on the examples…

equal(1 :: 2 :: nil, 1 :: 3 :: nil)

 = (1 = 2) and equal(2 :: nil, 3 :: nil) def of equal (4th line)

 = (1 = 2) and (2 = 3) and equal(nil, nil) def of equal (4th line)

 = T and T and F def of equal (1st line)

Inductive Data Types in TypeScript

• Translation to TypeScript

type List = {kind: "nil"}

 | {kind: "cons", hd: bigint, tl: List};

const equal = (L: List, R: List): boolean => {

 if (L.kind === "nil") {

 return R.kind === "nil";

 } else {

 if (R.kind === "nil") {

 return false;

 } else {

 return L.hd === R.hd && equal(L.tl, R.tl);

 }

 }

}; math definition may be easier to read

Definition of List Concatenation

• Concatenate L and R: “a single list containing

 the elements of L followed by the elements of R”

• Look at some examples…

L R concat(L, R)

nil nil nil

nil 3 :: 4 :: nil 3 :: 4 :: nil

2 :: nil 3 :: 4 :: nil 2 :: 3 :: 4 :: nil

1 :: 2 :: nil 3 :: 4 :: nil 1 :: 2 :: 3 :: 4 :: nil

…

Definition of List Concatenation

L R concat(L, R)

nil nil nil

nil 3 :: 4 :: nil 3 :: 4 :: nil

2 :: nil 3 :: 4 :: nil 2 :: 3 :: 4 :: nil

1 :: 2 :: nil 3 :: 4 :: nil 1 :: 2 :: 3 :: 4 :: nil

• Mathematical definition of concat : (List, List) → List

concat(nil, R) :=

concat(x :: L, R) :=

Definition of List Concatenation

1 :: 2 :: nil 3 :: 4 :: nil 1 :: 2 :: 3 :: 4 :: nil

• Mathematical definition of concat : (List, List) → List

concat(nil, R) := R

concat(x :: L, R) := x :: concat(L, R)

• Check that this matches examples…

concat(1 :: 2 :: nil, 3 :: 4 :: nil)

 = 1 :: concat(2 :: nil, 3 :: 4 :: nil) def of concat (2nd line)

 = 1 :: 2 :: concat(nil, 3 :: 4 :: nil) def of concat (2nd line)

 = 1 :: 2 :: 3 :: 4 :: nil def of concat (1st line)

Definition of List Concatenation

• Mathematical definition of concat : (List, List) → List

concat(nil, R) := R

concat(x :: L, R) := x :: concat(L, R)

• Translation to TypeScript

const concat = (S: List, R: List): List => {

 if (S.kind === "nil") {

 return R;

 } else {

 return cons(S.hd, concat(S.tl, R));

 }

};

Notes on Lists Posted on the Website

• Shorter version of everything we've discussed

• In addition:

1. Defines a few more useful list functions

2. Mentions important properties of concat:
– operator notation "⧺"

– associativity and identity

3. Mentions important applications of lists

– maps are lists of (key, value) pairs

– sets can be defined defined as lists

• Lists are our most important data type!

Formalizing a Specification

• Sometimes the instructions are written in English

– English is often imprecise or ambiguous

• First step then is to “formalize” the specification:

– translate it into math with a precise meaning

• How do we tell if the specification is wrong?

– specifications can contain bugs!

Is it obvious that equal & concat are correct? Maybe not.

• We tested our definition on a few examples

– what can we do to increase the odds we spot bugs?

Testing

Unit vs Integration Tests

• A unit test checks one function

– ideally, without testing anything else (not always possible)

• An integration test makes sure units work together

– many (most?) bugs in practice are here

• An end-to-end test exercises almost all the code

• How are we testing Dijkstra in HW3?

– we are doing end-to-end testing

– this makes debugging harder! (more to search)

Unit vs Integration Tests

• A unit test checks one function

• An integration test makes sure units work together

• An end-to-end test exercises almost all the code

• You will be expected to write unit tests in industry

• There will also be integration and end-to-end tests

– someone will write them, but maybe not you

– (requires understanding the whole system)

• We will focus on unit testing

Unit Testing

• Even individual functions might be too big…

a lot of code here…

more in here…

Unit Testing

• Even individual functions might be too big…

– split out pieces into their own functions

• Our coding conventions help enforce this

const heap = new Heap<MyObj>((a: MyObj, b: MyObj) => {

 … multi-line calculation …

 });

– make this its own function

makes the code more understandable and testable

• Purposefully design the code to be testable

– important part of programming in practice

“Manual” vs Programmatic Tests

• Usually possible to run the code by hand (“manually”)

– open it in node and execute it

– open it in the browser and look at it (UI)

• No downside… unless the code changes

– then, you need to do the tests again

• Programmatic tests are code that tests other code

– easy to run them again whenever the code changes

– these are generally preferred

• What did we do in HW3?

“Manual” vs Programmatic Tests

• Usually possible to run the code by hand (“manually”)

– open it in node and execute it

– open it in the browser and look at it (UI)

• No downside… unless the code changes

– then, you need to do the tests again

• For UI, manual testing is still common

– written tests are hard to write and imperfect

need to see it in the browser to be sure that it looks right

– we will test UI manually

– non-UI functions and all server code tested programmatically

Writing a Programmatic Test

1. Choose an input / configuration

– description of the inputs / configuration is the “test case”

2. Think through what the answer should be

– look at the specification for the correct answer

– if you run the code to get the answer, you are not testing

“Engineers are paid to think and understand.”

— Class slogan #1

Writing a Programmatic Test

1. Choose an input / configuration

– description of the inputs / configuration is the “test case”

2. Think through what the expected answer is

– if you run the code to get the answer, you are not testing

3. Write code that

a) calls the function that input

b) compares the actual answer to the expected one

c) throws an error if they do not match

– useful libraries for doing this…

Writing a Programmatic Test

// number.ts

/** Returns the greatest common divisor of a and b. */

export const gcd = (a: bigint, b: bigint): bigint => {

 …

};

/** Determines whether n is a prime number. */

export const isPrime = (n: bigint): boolean => {

 …

};

Writing a Programmatic Test with Mocha

// number_test.ts

import * as assert from "assert";

import { gcd, isPrime } from "./number";

describe("number", () => {

 it("isPrime", () => {

 assert.strictEqual(isPrime(2n), true);

 assert.strictEqual(isPrime(3n), true);

 assert.strictEqual(isPrime(4n), false);

 });

 it("gcd", () => {

 assert.strictEqual(gcd(3n, 2n), 1n);

 assert.strictEqual(gcd(9n, 3n), 1n);

 assert.strictEqual(gcd(12n, 9n), 3n);

 });

});

Don't worry too much

about the details here….

Writing a Programmatic Test with Mocha

// number_test.ts

import * as assert from "assert";

import { gcd, isPrime } from "./number";

describe("number", () => {

 it("isPrime", () => {

 assert.strictEqual(isPrime(2n), true);

 assert.strictEqual(isPrime(3n), true);

 assert.strictEqual(isPrime(4n), false);

 });

– use assert.strictEqual to compare primitive values

– use assert.deepStrictEqual to compare records & arrays

Running Programmatic Tests with Mocha

$ npm run test

 number

 ✓ isPrime

 ✓ gcd

 2 passing (3ms)

Ground Rules for Testing

1. Only need to test inputs allowed by the spec

– there is no correct answer for other inputs

/** Determines whether a positive integer is prime. */

export const isPrime = (n: bigint): boolean => {

 if (n <= 0n)

 throw new Error(`not a positive integer: ${n}`);

 …

};

Ground Rules for Testing

1. Only need to test inputs allowed by the spec

– there is no correct answer for other inputs

2. Choose tests for each function individually

– pick tests to do a good job of testing that one function

/** Determines whether a positive integer is prime. */

export const isPrime = (n: bigint): boolean => {

 if (n <= 0n)

 throw new Error(`not a positive integer: ${n}`);

 const m = intSqrt(n); // integer square root of n

 …

}; intSqrt has its own tests!

How Many Tests are Necessary?

• Consider the following function:

// Allows inputs 0 <= a, b, c <= 10,000 …

const f = (a: bigint, b: bigint, c: bigint) => {

 …

};

• How many tests needed guarantee correctness?

– 1 trillion!

– "just write a loop and …"

the code in that loop could also be wrong

– cannot think through even 1000 tests

most code we write cannot be exhaustively tested

Ground Rules for Testing

1. Only need to test inputs allowed by the spec

– there is no correct answer for other inputs

2. Test each function individually

– assume anything it calls is correct (its own tests will check)

3. Test code should be simple

– any loops in tests need their own tests!

4. If there are fewer than 10 allowed inputs,

then do test them all!

– take advantage of the easy case

Choosing Test Cases

// Returns true iff n is a prime number

 const isPrime = (n: bigint): boolean => { … }

• How about if we test 2, 3, 4, 7, 12, 97, 99?

– seems okay?

Choosing Test Cases

// Returns true iff n is a prime number

 const isPrime = (n: bigint): boolean => {

 if (n < 100n) {

 return PRIME_CACHE[n]; // precomputed answers

 } else {

 for (let k = 2n; k*k <= n; k++) {

 if (n % k === 0n)

 return false;

 }

 return true;

 }

 };

Cases 2 .. 100 are table lookups!

We didn't test the loop at all!

Impossible to know this without

looking at the actual code.

Clear-Box Testing

• We need to look at the code to know what to test

– this is called "clear-box testing"

– it will be our primary heuristic

• In this class, I want a clear rule for how many tests

– want homework and tests to have clear right/wrong answers

• Outside of class, these rules are also good

– most programmers will be familiar with these concepts

Statement Coverage

• Simplest metric is "statement coverage"

– what percentage of the statements in the code are

executed by at least one test

– this be nearly 100%

export const isPrime = (n: bigint): boolean => {

 if (n <= 0n)

 throw new Error(`not a positive integer: ${n}`);

 … // code for positive integer inputs

};

• The "throw" is not executed by any allowed input

– we only test the allowed inputs

Statement Coverage

• Simplest metric is "statement coverage"

– what percentage of the statements in the code are

executed by at least one test

• Must test 100% of code reachable on allowed inputs

– cannot send code to users that you didn't even try!

– we will refer to this as having "full statement coverage"

• Are we done?

Statement Coverage

• Consider the following function:

/** Returns the smaller of a and b. */

const min = (a: bigint, b: bigint): bigint => {

 let m = a;

 if (a <= b)

 m = a;

 return m;

};

– testing on a=1 b=2 gives full statement coverage

– what is the bug?

gives the wrong answer whenever a > b

– we never tested the case where the "if" doesn't execute

Conditionals

Conditionals are "if" statements

 if (n > 0) {

 x = 2*(n – 1);

 } else {

 x = 0;

 }

Every conditional has two branches (“then” and “else”)

Conditionals

Conditionals are "if" statements

 if (n > 0) { = if (n > 0) {

 x = 2*(n – 1); = x = 2*(n – 1);

 } = } else {

 = }

Every conditional has two branches (“then” and “else”)

– missing "else" still has an empty else branch

Branch Coverage

• Next metric is "branch coverage"

– for what percentage of the conditionals, are both branches

executed by some test

• Must test all branches reachable on allowed inputs

– can ignore branches that are unreachable

i.e., the ones that throw new Error on bad inputs

Branch Coverage

• Consider the following function:

/** Returns the smaller of a and b. */

const min = (a: bigint, b: bigint): bigint => {

 let m = a;

 if (a <= b)

 m = a;

 return a;

};

– problem only arises when "if" falls through to code after

– if every branch ends with return / throw,

then statement coverage = branch coverage

always true for code without mutation of local variables

Branch Coverage

• Next metric is "branch coverage"

– for what percentage of the conditionals, are both branches

executed by some test

• Must test all branches reachable on allowed inputs

– can ignore branches that are unreachable

i.e., the ones that throw new Error on bad inputs

• Are we done?

Branch Coverage

• Consider the following function:

/** Returns quadrant containing (x, y). */

const quad = (x: number, y: number): 1|2|3|4 => {

 let answer;

 if (x >= 0) {

 answer = 1;

 } else {

 answer = 2;

 }

 if (y >= 0)

 answer = 4;

 return answer;

};

– testing on (2, -2) and (-2, 2) gives full branch coverage

– this code is wrong… it never returns 3!

2 1

3 4

How Many Tests Are Required?

• More advanced metrics could fix this

– "path coverage" would require 4 tests

– #paths can grow exponentially in #branches

• For straight-line code and conditionals,

we will only require branch coverage

• What about loops / recursion?

How Many Tests Are Required?

• Consider the following function:

const bsearch = (s: string, A: Array<string>): number => {

 let lo = 0;

 let hi = A.length;

 while (lo < hi) { // s could be in A[lo .. hi-1]

 const m = Math.floor((lo + hi) / 2);

 if (s < A[m]) {

 hi = m;

 } else if (s > A[m]) {

 lo = m + 2;

 } else {

 return m;

 }

 }

 return hi;

};

Testing on s="a"/"b"/"c" A=["b"]
gives full statement coverage

But the code is wrong.

In general, values written inside the loop

are not read until the next time around,

so you need 2+ iterations to test them.

How Many Tests Are Required?

• Our last metric is "loop coverage" (non-standard terminology)

– what percent of loops are executed 0, 1, and many (2+)

times by some test case

• Same idea applies to recursion

– some arguments passed to recursive calls may not be read

until the second recursive call

– full loop coverage means every recursive call is executed 0,

1, and many times by some test

• Are we done?

– no!

What Can We Learn From Testing?

“Program testing can be used to show the presence of bugs,

but never to show their absence!”

Edsgar Dijkstra

Notes on Structured Programming, 1970

“Beware of bugs in the above code;

I have only proved it correct, not tried it.”

Donald Knuth, 1977

Summary of testing requirements

• At least two tests for any function (non-UI)

• Must have full coverage of reachable

– statements: must be executed

– branches: must execute both branches

– loops / recursion: must run 0, 1, & many times

• Summary notes posted on the website

– includes other heuristics are also useful in practice

Example 1

// n must be a non-negative integer

 const f = (n: bigint): number => {

 if (n === 0n) {

 return 0;

 } else {

 return Math.sin(Math.PI * (Number(n) + 0.5));

 }

 }

How many tests? Which ones?

– 0 (top branch) and 1 (bottom branch)

statement coverage = branch coverage since no "fall through"

Example 2

// n must be a non-negative integer

 const f = (n: bigint): bigint => {

 if (n < 3n) {

 return 0n;

 } else if (n < 10n) {

 return (n – 3n) / 10n;

 } else {

 return 1n;

 }

 }

How many tests? Which ones?

– 2 (top), 6 (middle), and 10 (bottom)

Example 3

// m and n must be a non-negative

 const f = (m: number, n: number): number => {

 if (m > n)

 m = n;

 return Math.abs(m);

 }

How many tests? Which ones?

– m=2, n=1 gives full statement coverage

– adding m=1, n=2 gives branch coverage

Example 4

// n must be a non-negative integer

 const f = (n: bigint): number => {

 if (n <= 1n) {

 return 0;

 } else {

 return 1 + f(n / 2n);

 }

 }

How many tests? Which ones?

– 1 (0 recursive calls)

– 2 (1 recursive call)

– 5 (2 recursive calls)

Example 5

// n must be an integer between 1 and 10

 const f = (n: bigint): bigint => {

 if (n === 1n) {

 return 0n;

 } else {

 return 1n + 2n * f(n – 1n);

 }

 }

How many tests? Which ones?

– only 10 inputs, so… all of them

Other Heuristics

Not mandatory for 331 but useful in practice:

• Make sure every argument value is changed

• Look at special values

– null, undefined, NaN, empty array, etc. often have bugs

• Look at the specification for branches

– maybe the code doesn’t split inputs where it should!

– e.g., spec splits into “if x ≥ 0” but code is “if (x > 0)”

	Slide 1: Specifications
	Slide 2: Specifications
	Slide 3: Specifications
	Slide 4: Kinds of Specifications
	Slide 5: Example: Imperative Specification
	Slide 6: Example: Declarative Specification
	Slide 7: Example: Declarative Specification
	Slide 8: Example: Declarative Specification
	Slide 9: Example: Imperative Specification
	Slide 10: "Straight From the Spec"
	Slide 11: Recall: Kinds of Specifications
	Slide 12: Examples from the Java APIs
	Slide 13: Examples from the Java APIs
	Slide 14: Examples from the Java APIs
	Slide 15: Next Up…
	Slide 16: Math Notation
	Slide 17: Basic Data Types in Math
	Slide 18: Basic Data Types in TypeScript
	Slide 19: Ways to Create New Types In Math
	Slide 20: Ways to Create New Types in TypeScript
	Slide 21: Type Narrowing With “If” Statements
	Slide 22: Type Narrowing vs Casting
	Slide 23: Type Narrowing Gotcha
	Slide 24: Type Narrowing of Function Calls
	Slide 25: Compound Types In Math
	Slide 26: Record Types in TypeScript
	Slide 27: Optional Fields in TypeScript
	Slide 28: Compound Types In Math
	Slide 29: Retrieving Part of a Tuple
	Slide 30: Simple Functions in Math
	Slide 31: Simple Functions in Math
	Slide 32: Complex Functions in Math
	Slide 33: Pattern Matching
	Slide 34: Pattern Matching on Natural Numbers
	Slide 35: Pattern Matching on Booleans
	Slide 36: Pattern Matching on Records
	Slide 37: Pattern Matching in TypeScript
	Slide 38: Pattern Matching in TypeScript
	Slide 39: Code Without Mutation
	Slide 40: Code Without Mutation
	Slide 41: Summary of Last Time
	Slide 42: Inductive Data Types
	Slide 43: Inductive Data Types
	Slide 44: Inductive Data Types
	Slide 45: Inductive Data Types
	Slide 46: Natural Numbers
	Slide 47: Even Natural Numbers
	Slide 48: Lists
	Slide 49: Shorthand Notation for Lists
	Slide 50: Inductive Data Types in TypeScript
	Slide 51: Design Patterns
	Slide 52: Type Narrowing with Records
	Slide 53: Inductive Data Type Design Pattern
	Slide 54: Inductive Data Type Design Pattern
	Slide 55: Inductive Data Types in TypeScript
	Slide 56: Inductive Data Types in TypeScript
	Slide 57: Inductive Data Types in TypeScript
	Slide 58: Inductive Data Types in TypeScript
	Slide 59: Functions Defined on Inductive Data Types
	Slide 60: Length of a List
	Slide 61: Length of a List
	Slide 62: Swapping Elements in a List
	Slide 63: Swapping Elements in a List
	Slide 64: Structural Recursion
	Slide 67: Formalizing Specifications
	Slide 68: Formalizing a Specification
	Slide 69: Definition of Sum of Values in a List
	Slide 70: Definition of Sum of Values in a List
	Slide 71: Definition of Sum of Values in a List
	Slide 72: Sum of Values in a List
	Slide 73: Definition of List Equality
	Slide 74: Definition of List Equality
	Slide 75: Definition of Sum of Values in a List
	Slide 76: Inductive Data Types in TypeScript
	Slide 77: Definition of List Concatenation
	Slide 78: Definition of List Concatenation
	Slide 79: Definition of List Concatenation
	Slide 80: Definition of List Concatenation
	Slide 81: Notes on Lists Posted on the Website
	Slide 82: Formalizing a Specification
	Slide 83: Testing
	Slide 84: Unit vs Integration Tests
	Slide 85: Unit vs Integration Tests
	Slide 86: Unit Testing
	Slide 87: Unit Testing
	Slide 88: “Manual” vs Programmatic Tests
	Slide 89: “Manual” vs Programmatic Tests
	Slide 90: Writing a Programmatic Test
	Slide 91: “Engineers are paid to think and understand.”
	Slide 92: Writing a Programmatic Test
	Slide 93: Writing a Programmatic Test
	Slide 94: Writing a Programmatic Test with Mocha
	Slide 95: Writing a Programmatic Test with Mocha
	Slide 96: Running Programmatic Tests with Mocha
	Slide 97: Ground Rules for Testing
	Slide 98: Ground Rules for Testing
	Slide 99: How Many Tests are Necessary?
	Slide 100: Ground Rules for Testing
	Slide 101: Choosing Test Cases
	Slide 102: Choosing Test Cases
	Slide 103: Clear-Box Testing
	Slide 104: Statement Coverage
	Slide 105: Statement Coverage
	Slide 106: Statement Coverage
	Slide 107: Conditionals
	Slide 108: Conditionals
	Slide 109: Branch Coverage
	Slide 110: Branch Coverage
	Slide 111: Branch Coverage
	Slide 112: Branch Coverage
	Slide 113: How Many Tests Are Required?
	Slide 114: How Many Tests Are Required?
	Slide 115: How Many Tests Are Required?
	Slide 116: What Can We Learn From Testing?
	Slide 117: Summary of testing requirements
	Slide 118: Example 1
	Slide 119: Example 2
	Slide 120: Example 3
	Slide 121: Example 4
	Slide 122: Example 5
	Slide 123: Other Heuristics

