
CSE 331: Software Design & Implementation Winter 2025

Quiz Section 10: Final Review

The following problems involve the MutableIntCursor ADT that represents a list of integers with
the additional ability to insert new characters at specific position within the list called the “cursor index”.
The cursor index can be moved forward or backward.

The basic facilities of the ADT are defined as follows:

/**

* A cursor is a pair (index, values), where values is list of integers

* and index is an integer satisfying 0 <= index <= len(values).

*/

export interface MutableIntCursor {

/** @returns index, where obj = (index, values) */

index: () => number;

/** @returns values, where obj = (index, values) */

values: () => List<number>;

/**

* Inserts the given integer at the cursor index and moves the

* cursor index forward by one.

* @param m The integer to insert after the cursor index.

* @modifies obj

* @effects obj = (index + 1, concat(P, m::S)),

* where (P, S) = split(index, values) and (index, values) = obj_0

*/

insert: (m: number) => void;

// ... more methods ...

}

The definitions used above are provided on the final page of the worksheet.

1

A list of integers can be used to represent text by storing character codes, which are integer values
that identify specific characters. The following ADT implements the MutableIntCursor interface by
using the abstract state (an index and a list of values) as its concrete state but by also recording the
number of newline characters. That makes it easy for the class to quickly determine the number of lines
in the text.

// The code of the newline character.

const newLine = "\n".charCodeAt(0);

class LineCountingCursor implements MutableIntCursor {

// RI: 0 <= this.index <= len(this.values) and

// this.numNewlines = count(this.values, newline)

// AF: obj = (this.index, this.values)

index: number;

values: List<number>;

numNewlines: number;

constructor(index: number, values: List<number>) {

this.index = index;

this.values = values;

this.numNewlines = count(this.values, newline);

}

// ... methods implemented later ...

}

The representation invariant requires that this.index refers to a valid position in the list this.values
and that this.numNewlines stores the number of newlines in this.values, which we can define for-
mally using recursion:

count :pListxZy,Zq Ñ Z

countpnil, cq :“ 0

countpa :: R, cq :“ countpR, cq ` 1 if a “ c

countpa :: R, cq :“ countpR, cq if a ­“ c

Finally, the class will have the following factory function:

/**

* Returns a cursor with the given abstract state.

* @returns the cursor (index, values)

*/

export const makeLineCountingCursor =

(index: number, values: List<number>): MutableIntCursor => {

return new LineCountingCursor(index, values);

};

2

Task 1 – Line-Craft

Consider the following code, which claims to implement insert in LineCountingCursor:

insert = (m: number): void => {
ttPre: this.numNewlines0 “ countpthis.values0, newlineq uu

const [P, S] = split(this.index, this.values);

this.values = concat(P, cons(m, S));

ttPre and uu

this.index = this.index + 1;

ttPre and

uu

if (m === newline) {
ttPre and

uu

this.numNewlines = this.numNewlines + 1;

ttPre and

uu

}
ttPost: this.index “ this.index0 ` 1 and this.values “ P `̀ m :: S

and this.numNewlines “ countpthis.values, newlineq

where pP, Sq “ splitpthis.index0, this.values0q uu

};

(a) Use forward reasoning to fill in the blank assertions above, which go into the “then” branch of
the if statement. It is okay to use subscripts to refer to the original values of this.index and
this.values (as is done in the postcondition).

Remember that constant values do not need to be tracked line-by-line, but those facts are
available to us when we prove that the postcondition holds.

3

(b) Explain, in English, why the fact listed in Pre will be true when the function is called.

(c) Explain, in English, why the facts listed in Post need to be true when the function completes in
order for insert to be correct.

4

(d) Prove by calculation the third fact of Post follows from the facts you wrote in the last blank
assertion and the known values of the constants. Note that the values on the right-hand side of
the constant declaration refer to the original values in those fields, not necessarily their current
values!

(To be fully correct, we would also need to prove the first fact and do a similar analysis for
the “else” branch, but we will skip those parts for this practice problem.)

You should also use1 the following facts in your calculation:

- Lemma 1: P `̀ S “ this.values0, where pP, Sq “ splitpthis.index0, this.values0q

- Lemma 5: countpL `̀ R, cq “ countpL, cq ` countpR, cq for any c, L,R

1Extra practice problem: prove this claim by induction on L

5

Task 2 – Hope For the Best, Prepare For the First

Fill in the missing parts of the following method so that it is correct with the given invariant.
The loop idea is to skip past elements in this.values until we reach one that equals the given

number or we hit the end. The first line of the invariant says that this.values is split up between
skipped and rest, with skipped being the front part in reverse order. The second line of the invariant
says that no element of skipped is equal to the number m.

Do not write any other loops or call any other methods. The only list functions that should be
needed are cons and len.

// Move the index to the first occurrence of m in values.

moveToFirst = (m: number): void => {

let skipped: List<number> = ________________________;

let rest: List<number> = ___________________________;

// Inv: this.values = concat(rev(skipped), rest) and

// contains(m, skipped) = false

while (___) {

}

if (rest === nil) {

throw new Error(‘did not find ${m}‘);

} else {

this.index = ____________________________________;

}

};

6

Task 3 – Speech-to-Next

Fill in the body of the removeNextLine method so that it removes all the text on the next line, i.e.,
the text between the first and second newline characters after the cursor index, along with the second
newline character, but leaving the cursor index in place. If there are no newline characters after the
cursor, then this should do nothing. If there is only one newline character after the cursor, this should
remove all the text after that newline.

This is a method of LineCountingCursor, so you can access the fields this.index and
this.values. You can call any of the Familiar List Functions on the final page and assume that each
has been translated to TypeScript.

Hint: the split-at function from HW5 may be useful here. Assume the TypeScript translation
of it is called splitAt.

// Removes the line of text after the one containing the cursor index

removeNextLine = (): void => {

};

7

Familiar List Functions

The function lenpLq returns the length of the list L:

len :List Ñ N

lenpnilq :“ 0

lenpx :: Lq :“ lenpLq ` 1

The function revpLq returns a list containing the values of L in reverse order:

rev :List Ñ List

revpnilq :“ nil

revpx :: Lq :“ revpLq `̀ rxs

The function containspa, Lq determines whether a is present in list L:

contains :pZ, Listq Ñ Bool

containspa, nilq :“ false

containspa, b :: Lq :“ pa “ bq or containspa, Lq

The function splitpm,Lq attempts to return a pair of lists pP, Sq, with P containing the first m
characters from L and S containing the remaining characters from L.

split :pN, Listq Ñ pList, Listq

splitp0, Lq :“ pnil, Lq

splitpm ` 1, nilq :“ undefined

splitpm ` 1, a :: Lq :“ pa :: P, Sq where pP, Sq :“ splitpm,Lq

If m ď lenpLq, split returns pP, Sq with lenpP q “ m and P `̀ S “ L.

The function split-atpL, cq always splits the given list L into a pair of lists pP, Sq, so that we
have P `̀ S “ L. However, in this case, we are promised that P contains no c’s, and S either starts
with c or is nil. The function is defined formally as follows:

split-at :pList,Zq Ñ pList, Listq

split-atpnil, cq :“ pnil, nilq

split-atpa :: R, cq :“ pnil, a :: Rq if a “ c

split-atpa :: R, cq :“ pa :: P, Sq if a ­“ c

where pP, Sq “ split-atpR, cq

8

