
CSE 331
Software Design & Implementation

Winter 2025
Section 10 – Final Review

Administrivia
• Final

– Tuesday, 3/18, CSE2 G20 from 2:30 - 4:20
– Please arrive a couple minutes early
– No notecards, all needed definitions will be included

• Final review session
– 6-7:30pm, Monday 3/17
– TA Breakout Floors in Allen (all of them)
– Bring questions related to practice exams or general

concepts
– More details coming in Ed announcement

Administrivia
HW 9

- Due 11pm Friday, 3/14 (but your final is on Tuesday so finish
early and study if possible!)

- Make sure to run the linter on your code!

- (Tiny tip for testing shortest path method: make both people meet at the same
endpoint (same building) so you can know the exact lat/long :))

- (Other tiny tip –for the final really. Testing requires coverage of all branches, but it’s
okay if coverage for a branch is achieved on an iteration after the first iteration).

Course Evals!!
• Please fill them out!

• We appreciate the feedback
– We will actually read them, so any suggestions will be

considered!

Final topics
• Reasoning about Recursion
• Reasoning about Loops and Tail Recursion
• Writing Methods
• Testing
• Writing the code of a for loop, given the loop idea and invariant.
• Writing or proving correct the methods of classes that implement

mutable ADTs
• Small questions on any other topics (all content is fair game)

ADT
• MutableIntCursor ADT represents a list of integers with the

ability to insert new characters at the “cursor index” within the list.
– cursor index can be moved forward or backward

• LineCountingCursor implements MutableIntCursor by:
– using the abstract state (an index and a list of values) as its

concrete state
– + records the number of newline characters (so class can

easily, quickly determine the number of lines in the text)

• Reminder: familiar functions on last page of WS!

Problem 1a
Look at the code in the worksheet which claims to implement
insert in LineCountingCursor. Use forward reasoning to fill in
the blank assertions above, which go into the “then”
branch of the if statement.

Problem 1c

Explain, in English, why the facts listed in Post need to be true
when the function completes in order for insert to be complete:

Problem 1d

Problem 2
• Fill in the missing parts of the method so it is correct with the given

invariant
• Loop idea:

– skip past elements in this.values until we reach one that equals
the given number or we hit the end

• Invariant:
– this.values is split up between skipped and rest, with skipped

being the front part in reverse order
– no element of skipped is equal to the number m

• Do not write any other loops or call any other methods. The only list
functions that should be needed are cons and len

Problem 2

1 2 m 3 nilthis.values:

Problem 2

1 2 m 3 nil

1 2 m 3 nil

Easiest way to satisfy the invariant

rest:

skipped: nil

this.values:

Problem 2

1

2 m 3
nil

nil

1 2 m 3 nil

While rest.hd != m (need to check rest != nil first),
remove and append rest.hd to skipped
(cons adds to front which reverses the list which matches the invariant)

rest:

skipped:

this.values:

Problem 2

12

m 3 nil

nil

1 2 m 3 nil

rest:

skipped:

this.values:

Problem 2

12

m 3 nil

nil

1 2 m 3 nil

When we exit the loop
- If rest = nil then we didn’t find m
- Otherwise, Index of m is the length of the skipped list

rest:

skipped:

this.values:

Problem 3
• Fill removeNextLine so it removes all the text on the next line:

text between the first and second newline characters after the
cursor index
– remove second newline, but leave cursor index in place
– If there are no newlines after cursor, then do nothing
– If there is only one newline after cursor, remove all text after it

• method of LineCountingCursor, so you can access this.index
and this.values

• Can use any Familiar List Functions from final page and assume
they’ve been translated to TS

• Hint: split-at function from HW5 may be useful, assume the TS
translation of it is called splitAt

Problem 3

Index

B

Problem 3

Index

A Index
[A, B] = split(index, values)

B

Problem 3

hi

Index

A Index
[A, B] = split(index, values)

CIndex

[C, D] = splitAt(B, newline)

D

CIndex

OR
\n

No \n after cursor

\n after cursor

B

Problem 3

Index

A Index
[A, B] = split(index, values)

[C, D] = splitAt(B, newline)
CIndex

No change:

No \n after cursor

Index

B

Problem 3

Index

A Index
[A, B] = split(index, values)

CIndex
[C, D] = splitAt(B, newline)

D\n\n after cursor
[E, F] = splitAt(D.tl, newline)

ENo second \n
Second \n E F\n

OR

B

Problem 3

Index

A Index
[A, B] = split(index, values)

CIndex
[C, D] = splitAt(B, newline)

D\n\n after cursor
[E, F] = splitAt(D.tl, newline)

ENo second \n
Remove everything after \n

A CIndex \n

B

Problem 3

Index

A Index
[A, B] = split(index, values)

CIndex
[C, D] = splitAt(B, newline)

D\n\n after cursor
[E, F] = splitAt(D.tl, newline)

Second \n
Remove next line:

A CIndex

E F

F\n

\n

You got this!
Puppy Dubs for
good luck

