
CSE 331: Software Design & Engineering Winter 2025

Quiz Section 8: Trees – Solutions

Task 1 – One, Two, Tree. . .

The problem makes use of the following inductive type, representing a left-leaning binary tree

type Tree :“ empty

| nodepval : Z, left : Tree, right : Treeq with heightpleftq ě heightprightq

The “with” condition is an invariant of the node. Every node that is created must have this property,
and we are allowed to use the fact that it holds in our reasoning.

The height of a tree is defined recursively by

height : Tree Ñ Z

heightpemptyq :“ ´1

heightpnodepx, S,Rqq :“ 1 ` heightpSq

In a general binary tree, the height of a non-empty tree is the length of the longest path to a leaf. With
a left-leaning tree, we know the longest path is the one that always travels toward the left child.

We can define the size of a tree, the number of values stored in it, as follows:

size : Tree Ñ N

sizepemptyq :“ 0

sizepnodepx, S,Rqq :“ 1 ` sizepSq ` sizepRq

Prove by structural induction that, for any left-leaning tree T , we have

sizepT q ď 2heightpT q`1 ´ 1

Define P pT q to be the claim that sizepT q ď 2heightpT q`1´1. We will prove this by structural
induction.

Base Case (empty). In this case, we can see that

sizepemptyq

“ 0 Def of size

“ 1 ´ 1

“ 20 ´ 1

“ 2´1`1 ´ 1

“ 2heightpemptyq`1 ´ 1 Def of height

Inductive Hypothesis. Suppose that P holds for trees S and R.

1

Inductive Step. We need to show P pnodepx, S,Rqq for any integer x.

Let x be any integer. Then, we can see that

sizepnodepx, S,Rqq

“ 1 ` sizepSq ` sizepRqq Def of size

ď 1 ` 2heightpSq`1 ´ 1 ` 2heightpRq`1 ´ 1 Inductive Hypothesis

“ 2heightpSq`1 ` 2heightpRq`1 ´ 1

ď 2 ¨ 2heightpSq`1 ´ 1 since heightpSq ě heightpRq

“ 2 ¨ 2heightpnodepx,S,Rq ´ 1 Def of height

“ 2heightpnodepx,S,Rq`1 ´ 1

Conclusion. P pT q holds for any left-leaning tree T by structural induction.

2

Task 2 – How Do I Love Tree, Let Me Count the Ways

The following is the definition of a binary search tree:

type BST :“ empty

| nodepx : Z, S : BST, R : BSTq

Suppose that we wanted to have a way to refer to a specific node in a BST. One way to do so
would be to give directions from the root to that node. If we define these types:

type Dir :“ LEFT | RIGHT

type Path :“ ListxDiry

then a Path tells you how to get to a particular node where each step along the path (item in the list)
would be a direction pointing you to keep going down the LEFT or RIGHT branch of the tree.

For example, LEFT :: RIGHT :: nil says to select the “LEFT”child of the parent and then the
“RIGHT” child of that node, giving us a grand-child of the root node.

(a) Define a function “findpp : Path, T : BSTq” that returns the node (a BST) at the path from the
root of T or undefined if there is no such node.

find : pPath, BSTq Ñ BST

findpnil, T q :“ T

findpd :: L, emptyq :“ undefined

findpLEFT :: L, nodepx, S,Rqq :“ findpL, Sq

findpRIGHT :: L, nodepx, S,Rqq :“ findpL,Rq

(b) Define a function “removepp : Path, T : BSTq” that returns T except with the node at the given
path replaced by empty.

remove : pPath, BSTq Ñ BST

func removepnil, T q :“ empty

removepd :: L, emptyq :“ undefined

removepLEFT :: L, nodepx, S,Rqq :“ nodepx, removepL, Sq, Rq

removepRIGHT :: L, nodepx, S,Rqq :“ nodepx, S, removepL,Rqq

3

Task 3 – Let’s Blow This Point

Suppose we had the following interface for a Point class that represents a point in 2D space:

/** Represents a point with coordinates in (x,y) space. */

interface Point {

/** @returns the x coordinate of the point */

getX: () => number;

/** @returns the y coordinate of the point */

getY: () => number;

/**

* Returns the distance of this point to the origin.

* @returns Math.sqrt(obj.x*obj.x + obj.y*obj.y)

*/

distToOrigin: () => number;

}

The following is an implementation of the Point interface:

class SimplePoint implements Point {

// RI: <TODO>

// AF: <TODO>

readonly x: number;

readonly y: number;

readonly r: number;

// Creates a point with the given coordinates

constructor(x: number, y: number) {

this.x = x;

this.y = y;

this.r = Math.sqrt(x*x + y*y);

}

getX = (): number => this.x;

getY = (): number => this.y;

distToOrigin = (): number => this.r;

}

(a) Define the representation invariant (RI) and abstraction function (AF) for the SimplePoint class.

RI: r = Math.sqrt(this.x * this.x + this.y * this.y)

AF: obj = (this.x, this.y)

4

(b) Use the RI or AF to prove that the distToOrigin method of the SimplePoint class is correct.

We can see that:

Math.sqrt(obj.x*obj.x + obj.y*obj.y)

“ Math.sqrt(this.x*this.x + this.y*this.y) by AF

“ this.r by RI

Our function returns this.r, so we know that it is correct.

(c) The following problem will make use of this math definition that rotates a point around the origin
px, yq by an angle θ:

rotate : pPoint, Rq Ñ Point

rotateppx, yq, θq “ px ¨ cospθq ´ y ¨ sinpθq, x ¨ sinpθq ` y ¨ cospθqq

Suppose we have the following implementation of the rotate method:

/** @returns rotate(obj, θ) */

rotate = (theta: number): Point => {

const newX = this.x * Math.cos(theta) - this.y * Math.sin(theta);

const newY = this.x * Math.sin(theta) + this.y * Math.cos(theta);

return new SimplePoint(newX, newY);

}

Prove that the rotate method is correct using the RI or AF.

We can see that:

rotatepobj, θq “ rotatep(this.x, this.y), θq by AF

“ pthis.x ¨ cospθq ´ this.y ¨ sinpθq, this.x ¨ sinpθq ` this.y ¨ cospθqq def of rotate

“ pnewX, this.x ¨ sinpθq ` this.y ¨ cospθqq def of newX

“ pnewX, newYq def of newY

Our function returns new SimplePoint(newX, newY), so we know that it is correct.

Task 4 – Going Back and Length

The following problem will make use of the following functions that operate on lists:

len : List Ñ N

lenpnilq :“ 0

lenpx :: Lq :“ 1 ` lenpLq

rev : List Ñ List

5

revpnilq :“ nil

revpx :: Lq :“ revpLq++rxs

Suppose we also have the fact Lemma 1: lenprevpLq ` `rxsq “ lenprevpLqq ` lenpx :: nilq for any
list L and element x.

Prove by Structural Induction that lenprevpLqq “ lenpLq for any list L. You may find that you need
to use Lemma 1 in your proof.

Define P pLq to be the claim that lenprevpLqq “ lenpLq. We will prove this by structural
induction.

Base Case (nil). In this case, we can see that

lenprevpnilqq

“ lenpnilq Def of rev

“ 0 Def of len

“ lenpnilq Def of len

Inductive Hypothesis. Suppose that P holds for list L.

Inductive Step. We need to show P px :: Lq for any element x and list L.

Let x be any element. Then, we can see that

lenprevpx :: Lqq

“ lenprevpLq ` `rxsq Def of rev

“ lenprevpLqq ` lenpx :: nilq Lemma 1

“ lenpLq ` len(x::nil) Inductive Hypothesis

“ lenpLq ` 1 ` len(nil) Def of len

“ lenpLq ` 1 Def of len

“ lenpx :: Lq Def of len

Conclusion. P pLq holds for any list L by structural induction.

6

