
CSE 331
Software Design & Implementation

Winter 2025
Section 8 – Trees and ADTs

Administrivia

● HW 8 released tonight, due Wed. March 5
○ Longer code section than recent weeks, so start

doing it early and come to office hours

2

Proof By Calculation (Review)
• The goal of proof by calculation is to show that an assertion is

true given facts that you already know
• You should start the proof with the left side of the assertion and

end the proof with the right side of the assertion. Each symbol
(=, >, <, etc.) connecting each line of the proof is that line’s
relationship to the previous line on the proof

• Only modify one side
Example:
Suppose we have the facts: x = 3, y = 4, z > 5 and we want to use
proof by calculation to prove x2 + y2 < z2. Our proof by calculation
would look like this:

x2 + y2 = 32 + y2 since x = 3
= 32 + 42 since y = 4
= 25
= 52

< z2 since z > 5
start with left side of
assertion

end with right side of
assertion

note that each line
shows the
relationship to the
previous line ONLY

Trees

● Trees are inductive data types with a constructor
that has 2+ recursive arguments

● These come up all the time…
○ no constructors with recursive arguments = “generalized

enums”
○ constructor with 1 recursive arguments = “generalized lists”
○ constructor with 2+ recursive arguments = “generalized

trees”

Height of a tree

● Binary Tree: a tree in which each node has at most
2 children
○ Not to be confused with Binary Search Tree, which also has the

ordering property that (nodes in L) < x and (nodes in R) > x

● type Tree := empty | node(x: ℤ, L: Tree, R: Tree)

Using Definitions in Calculations (example)

•Suppose “T = node(1, empty, node(2, empty, empty))”
•Prove that height(T) = 1

height(T) = height(node(1, empty, node(2, empty, empty)) since T = …
 = 1 + max(height(empty), height(node(2, empty, empty))) def of
height
 = 1 + max(-1, height(node(2, empty, empty))) def of height
 = 1 + max(-1, 1+ max(height(empty), height(empty))) def of height
 = 1 + max(-1, 1+ max(-1, -1)) def of height (x 2)
 = 1 + max(-1, 1+ -1) def of max
 = 1 + max(-1, 0)
 = 1 + 0 def of max
 = 1

Task 1: One, Two, Tree…

Since height(S) >= height(T)

Prove by structural induction that, for any left-leaning tree T we have

Task 2: How do I Love Tree

Task 2: How do I Love Tree

“undefined” sidebar
● If the end of the path cannot be reached within the tree (hit a

dead-end before end of Path) → function should result in
undefined
○ undefined just indicates invalid inputs
○ If an expression includes a call that results in undefined,

then the entire expression is undefined
■ Similar to how an Error in code does not “return”

but bubbles up to callers of the function with the
error

Specifications for ADTs – Review
● New Terminology for specifying ADTs:

○ Abstract State / Representation (Math)
■ How clients should understand the object
■ Ex: List(nil or cons)

○ Concrete State / Representation (Code)
■ Actual fields of the record and the data stored
■ Ex: { list: List, last: bigint | undefined }

● We’ve had different abstract and concrete types all along!
○ in our math, List is an inductive type (abstract)
○ in our code, List is a string or a record (concrete)

● Term “object” (or “obj”) will refer to abstract state
○ “object” means mathematical object
○ “obj” is the mathematical value that the record represents

Documenting ADTs – Review
Abstract Function (AF) – defines what abstract state the field
values represent

– Maps field values → the object they represent
– Output is math, this is a mathematical function

Representation Invariants (RI) – facts about the field values that
must always be true

– Constructor must always make sure RI is true at runtime
– Can assume RI is true when reasoning about methods
– AF only needs to make sense when RI holds
– Must ensure that RI always holds

// A list of integers that can retrieve the last element in O(1)
export interface FastList {
/**
* Returns the object as a regular list
* @returns obj
*/
toList: () => List<bigint>
}

Documenting ADTs – Example

class FastLastList implements FastList {
 // RI: this.last = last(this.list);
 // AF: obj = this.list;

 // @ returns last(obj)
 getLast = (): bigint | undefined => {
 return this.last;
 };
}

Hide the representation
details (i.e. real fields) from
the client

Talk about functions in
terms of the abstract state
(obj)

Task 3: Let’s Blow This Point
Suppose we had the following interface and implementation to represent a point in 2D space:

Task 3: Let’s Blow This Point

Task 3: Let’s Blow This Point

Task 4: Going Back and Length

4. Prove by Structural Induction that len(rev(L)) = len(L) for any list L. You may use
Lemma 1 in your proof.

Lemma 1:
len(rev(L) :: x) =

len(rev(L)) + len(x::nil)
for any list L and element x

*ok to work from top
and bottom as long
as only modifying
right side!

